Patient-specific Prediction of SEEG Electrode Bending for Stereotactic Neurosurgical Planning Supplemental Material

Alejandro Granados · Yuxuan Han · Oeslle Lucena · Vejay Vakharia · Roman Rodionov · Sjoerd B. Vos · Anna Miserocchi · Andrew W. McEvoy · John S. Duncan · Rachel Sparks · Sébastien Ourselin

Received: date / Accepted: date

Abstract Purpose: Electrode bending observed after stereotactic interventions is typically not accounted for in either computer-assisted planning algorithms, where straight trajectories are assumed, or in quality assessment, where only metrics related to entry and target points are reported. Our aim is to provide a fully automated and validated pipeline for the prediction of stereoelectroencephalography (SEEG) electrode bending. Methods: We transform electrodes of 86 cases into a common space and compare features-based and image-based neural networks on their ability to regress local displacement (lu) or electrode bending (eb). Electrodes were stratified into six groups based on brain structures at the entry and target point. Models, both with and without Monte Carlo (MC) dropout, were trained and validated using 10-fold cross validation. Results: Image-based models outperformed features-based models for all groups, and models that predicted lu performed better than for eb. Image-based model prediction with MC dropout resulted in lower mean squared error (MSE) with improvements up to 12.9% (lu) and 39.9% (eb), compared to no dropout. Using an image of brain tissue types (cortex, white and deep grey matter) resulted in similar, and sometimes better performance, compared to using a T1-weighted MRI when predicting lu. When inferring trajectories of image-based models (brain tissue types), 86.9% of trajectories had an $MSE \leq 1 \text{ mm. } Conclusion:$ An image-based approach regressing local displacement with an image of brain tissue types resulted in more accurate electrode bending predictions compared to other approaches, inputs, and out-

A. Granados, Y. Han, O. Lucena, R. Sparks, S. Ourselin

School of Biomedical Engineering & Imaging Sciences, King's College London, UK https://www.kcl.ac.uk/bmeis

E-mail: alejandro.granados@kcl.ac.uk

V. Vakharia, R. Rodionov, S. B. Vos, A. Miserocchi, A. W. McEvoy, J. S. Duncan National Hospital for Neurology and Neurosurgery, London, UK

puts. Future work will investigate the integration of electrode bending into planning and quality assessment algorithms.

Keywords Surgical planning · SEEG · Prediction of trajectory.

1 Data

 Table 1 Electrode trajectories are stratified into six groups based on entry and target points. Anatomical regions are identified from the GIF parcellation obtained from the T1w.

		groups						
1		superior frontal gyrus	middle frontal gyrus	inferior frontal orbital gyrus	temporal gyrus	anterior/posterior central gyrus	parietal occipital lobes	
		(sfg)	(mfg)	(ifog)	(tg)	(cg)	(po)	
cases		62	76	60	74	56	62	
electrodes		150	163	87	242	93	117	
entry point (EP)	gyrus	- superior frontal	- middle frontal	- lateral orbital - opercular/triangular/orbiutal inferior frontal	 inferior/medial/superior temporal 	- posterior central - anterior	 angular supramarginal inferior/middle/superior occipital 	
	others	 supplementary motor cortex frontal pole 		- frontal operculum	- temporal lobe		 superior parietal lobule occipital lobe 	
	gyrus	- superior frontal - anterior/middle cingulate - anterior/medial/posterior orbital - rectus	 anterior/middle cingulate anterior/medial/posterior/ lateral orbital superior frontal rectus 	- anterior cingulate - rectus - medial orbital - lateral orbital - opercular/triangular inferior frontal	 fusiform lingual parahippocampal posterior cingulate traverse temporal inferior/medial temporal 	 middle/posterior cingulate anterior medial segment 	 middle/posterior cingulate fusiform lingual angular inferior occipital superior temporal 	
target point (TP)	white matter	- cingulate - frontal	- cerebral - insula - cingulate - frontal	- cerebral - frontal	- cerebral - temporal - insula - frontal - occipital - periventricular	- cerebral - insula - cingulate - frontal - parietal	- cerebral - cingulate - parietal - temporal - occipital	
	others	- supplementary motor cortex - claustrum - anterior insula - medial frontal cortex - sfg medial segment	 supplementary motor cortex lateral ventride corpus callosum claustrum anterior insula central operculum medial frontal cortex sfg medial segment frontal operculum 	 frontal operculum putamen corpus callosum claustrum anterior insula central operculum medial frontal cortex 	- amygdala - hippocampus - lateral ventricle - ventral dc - entorhinal - claustrum - planun polare - temporal lobe	- corpus callosum - claustrum - anterior/posterior insula - central operculum - frontal operculum - supplementary motor cortex	- corpus callosum - precuneus - posterior insula - parietal operculum - anygdala - lateral ventricle - calcarine cortex - cuneus - superior parietal lobule	

Fig. 1 Electrode deviations from straight trajectories as observed from electrodes identified from post-operative CT. Deviations from rigid trajectories in mm (global displacement) for x (lateral displacement; pink), y (upward/downward displacement; green), and z (anterior/posterior; blue) axis in MNI space are plot for each anatomical group. Each line represents a component of an electrode trajectory up to an implanted depth.

Fig. 2 Visualisation of the SEEG electrode trajectories dataset used in our study. Coronal (left) and axial (right) views of electrode trajectories stratified by anatomical regions (see Table 1 in main manuscript). Regions related to entry point (white wireframe mesh) and target point (green wireframe mesh) are shown.

Table 2 Hand-crafted features and labels. Features are grouped into five categories related to the electrode, amount of bending, T1w, GIF, and collision with surface meshes. Features/labels can be scalar (S), continuous (C), or 3D vector (V) types for the entire trajectory (*top*) or at interpolated points along the trajectory (*bottom*). * indicates normalisation via z-score.

	Features					
	electrode	bending	T1w	GIF	collision	
entire trajectory	- number of contacts (S)	- bolt direction (V)	- intracranial depth* (S)	 region at EP (C) region at TP (C) white matter ratio* (S) 	 position/normal crossing scalp/cortex (V) angle wrt scalp/cortex (S) 	
at interpolated points	- stylet (C) - position of implantation/ rigid (V)	 - electrode direction (V) - local/global bending* (V) - curvature* (S) - velocity* (S/V) - acceleration* (S/V) 	 voxel indices (V) T1w intensity (S) depth* (S) 	 region (C) regions traversed* (S) cortex/white/deep (CVD) (C) cortex/white/deep distance traversed* (S) segment length* (S) segment white matter ratio* (S) 	 distance to falx cerebri plane* (S) position/normal crossing white/deep matter (V) angle wrt white/deep matter* (S) 	 local displacement (V) electrode bending direction (V)

2 Training time

Table 3 Mean training time (hh:mm:ss) of one fold of hand-crafted (HcF) and end-to-end (E2E) models when regressing local displacement (lu) and electrode bending (\hat{eb}) labels across anatomical groups. The fastest model of each group is highlighted in bold.

		HcF	E2E		
Label	Group	-	MRI	GIF	CWD
	sfg	00:05:40	00:04:40	00:07:07	00:07:13
	mfg	00:06:07	00:06:40	00:08:07	00:05:40
111	ifog	00:03:33	00:03:40	00:03:47	00:03:40
Iu	tg	00:12:00	00:07:00	00:07:27	00:08:07
	apcg	00:04:27	00:04:00	00:03:40	00:03:47
	ро	00:04:13	00:06:20	00:04:20	00:04:20
	sfg	00:15:27	00:05:53	00:04:47	00:04:40
	mfg	00:17:27	00:06:20	00:04:07	00:04:27
ôh	ifog	00:10:00	00:03:47	00:02:27	00:02:33
60	tg	00:15:20	00:18:13	00:09:20	00:05:47
	apcg	00:07:13	00:03:40	00:02:53	00:02:47
	ро	00:11:47	00:04:13	00:03:47	00:03:47

3 Inference

Fig. 3 Correlation between electrode length and MSE_i across anatomical groups. *Top:* Full (left) and close-up (right) views of a scatter plot of electrode length and MSE of trajectory prediction versus ground truth (i.e. MSE_i). A horizontal dashed line indicates MSE_i values at 1 mm. *Bottom:* Table of Person's correlation coefficient r and corresponding p-values.