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1 Introduction

To complement the main manuscript, we provide further explanations, illustra-
tions, and details about the architecture of the combined model and runtime of all
networks in this supplementary document. Furthermore, the results section con-
tains additional evaluations of the three baseline models trained on the proposed
synthetic and real datasets.

2 Baseline models

In the following paragraphs we provide additional information about the architec-
ture of the combined model, as well as implementation and runtime details of the
proposed baselines.

2.1 Combined Model

Figure 1 illustrates the combined model architecture, as described in section 3.3.3
in the main manuscript. This model is a combination of the other two state-of-the-
art baselines, PVNet and HandObjectNet. It consists of a shared ResNet-18 encoder
and two decoders for the hand and tool pose, respectively.

The encoder together with the PVNet object decoder resemble a U-Net-like
structure [4], which is explained in detail in the following paragraph. The object
decoder is a series of blocks consisting of a bilinear upsampling layer and a con-
volution with batch normalization and a leaky ReLu activation function. Each
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Fig. 1 Overview of the model architecture. The tensor sizes are given as H ×W × C. Skip
connections are indicated with dotted lines.

↓ Metric, Model → HandObjectNet [1] PVNet [3] Ours
98th-% Max. 98th-% Max. 98th-% Max.

Tool ADD (mm) 28.15 105.86 162.04 1998.93 157.86 3564.66
Tool Proj2D (px) 20.70 1181.93 40.12 3023.87 41.26 7408.28
Drill tip error (mm) 132.61 243.52 455.62 1941.20 460.90 3205.32
Drill bit dir. error (deg) 19.43 40.82 161.17 178.58 167.38 179.53
2D keypoint error (px) - - 39.31 191.93 39.55 856.13
Hand ADD (mm) 28.81 113.25 - - 74.70 143.28
Hand Proj2D (px) 16.56 618.68 - - 38.20 468.18

Table 1 The 98th percentiles and maximum errors of the models on real test data. All models
were trained on synthetic data and refined using real data. The reported percentiles and
maxima were aggregated over 5-fold cross validation.

block has a skip connection from the last layer of the shared encoder with the
respective feature map size. Hence, the input for the convolutional layer in each
block is the concatenation of the encoder feature maps and the upsampled feature
maps of the previous convolution in the decoder. While the original PVNet object
decoder only downsamples the feature maps to a minimum size of H/8 × W/8,
we reverted this design decision to make the decoder branch compatible with the
HandObjectNet architecture. The last channel defines a segmentation mask which
is used to limit the vector field to the pixels which belong to the tool. For each
keypoint we compute the mean and covariance for a set of keypoint candidates,
which are generated in a RANSAC-like fashion by repeatedly triangulating two
randomly sampled vectors of the vector field. The final 6D tool pose is recov-
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Fig. 2 Qualitative results of HandObjectNet on the real test data. The first column shows the
estimated hand pose along with the transparent ground truth. The second column visualizes
2D projections of the ground truth vertices in blue, and the predicted vertices in red. The last
two columns display the 3D scene’s XZ and YZ subspace and correspond to views from the top
and right, respectively. Note that the 3D views are not perspective views, nor was a z-buffer
used to compute the correct occlusions.

ered via an uncertainty-driven PnP approach that minimizes the Mahalanobis
distance between the estimated distributions and the ground truth 2D keypoints.
The RANSAC voting and pose recovery via an uncertainty-driven PnP is adopted
from the PVNet paper [3].

We apply the binary cross entropy and vector field losses from the original
PVNet paper [3] for the output of the object decoder. For the hand loss we use
the mean squared error of the estimated global hand positions, as well as the `2-
regularized MANO pose and shape parameters, as described in [2]. The final loss
is composed of the sum of object and hand loss.

The hand joints and mesh representation are computed using the MANO Py-
torch layer [2].

2.2 Runtime

To get an estimate of the relative computing efficiency, we measured the inference
time for all models and computed the number of trainable parameters. PVNet
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Fig. 3 Qualitative results of PVNet on the real test data. The first column shows estimated
2D keypoints in red, along with their 1σ standard deviation. Each line connects a keypoint
estimate to the projection of the corresponding ground truth 3D keypoint. The second column
visualizes 2D projections of the ground truth vertices in blue, and the predicted vertices in red.
The last two columns display the 3D scene’s XZ and YZ subspace and correspond to views
from the top and right, respectively. Note that the 3D views are not perspective views, nor
was a z-buffer used to compute the correct occlusions.

and HandObjectNet have a comparable size of 13.0 × 106 and 12.5 × 106 trainable
parameters, respectively. Our proposed model is slightly larger with 16.4 × 106

trainable parameters, due to additional convolutional layers that were introduced
to make the PVNet object decoder branch compatible with the HandObjectNet
model. The measured inference time of HandObjectNet is 11.3 fps. PVNet and the
proposed model are much slower with 2.6 fps and 2.3 fps, respectively. However,
our measurements show that 90 % of the interence time is spent in the RANSAC
voting step due to an inefficient, CPU-based implementation of the optimization
algorithm. The long runtime is caused by the relatively high number of generated
keypoint hypotheses, which are used to reliably estimate the means and covariances
for each keypoint. Reducing the number of hypotheses will result in a shorter
inference time, at the cost of less accurate uncertainties. All runtime measurements
were performed with a batch size of 1 and on a laptop with a Nvidia GTX 1050
Mobile GPU and a Intel i5-8265U CPU.
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Fig. 4 Qualitative results of our proposed model on the real test data. The first column shows
the estimated hand pose along with the transparent ground truth. In the second column, the
estimated 2D keypoints are displayed in red, along with their 1σ standard deviation. Each
line connects a keypoint estimate to the projection of the corresponding ground truth 3D
keypoint. The third column visualizes 2D projections of the ground truth vertices in blue, and
the predicted vertices in red. The last two columns display the 3D scene’s XZ and YZ subspace
and correspond to views from the top and right, respectively. Note that the 3D views are not
perspective views, nor was a z-buffer used to compute the correct occlusions.

3 Additional Evaluations

3.1 Qualitative Results

We show exemplary pose estimation results for HandObjectNet, PVNet and the
combined baseline, in Figures 2, 3 and 4, respectively. In addition, we visualize the
full range of the accuracy-threshold curves for the tool and hand ADD metrics in
Figure 5, which are truncated in the main manuscript for easier readability of the
plots in the relevant error range for clinical applications. Last, we report the 98th
percentiles as well as the observed maximum errors in Table 1 to give an estimate
of the worst-case scenario.

We observe two flaws in PVNet’s keypoint-based pose estimation. First, the
keypoint recovery becomes unstable in case of severe truncation of the tool, which
is due to the small area of the vector field. In these cases, the estimated pose
can have arbitrarily large errors. Second, the pose recovery via PnP sometimes



6 Jonas Hein et al.

100 101 102 103
0

20

40

60

80

100

Tool ADD Threshold (mm)

A
cc

u
ra

cy
(%

)

100 101 102
0

20

40

60

80

100

Hand ADD Threshold (mm)

A
cc

u
ra

cy
(%

)
HandObjectNet (Refined) HandObjectNet (Pretrained)

PVNet (Refined) PVNet (Pretrained)

Combined Model (Refined) Combined Model (Pretrained)

Fig. 5 Accuracy-threshold curves of the tool and hand ADD metrics for all baseline models.
Pretrained models are indicated with dashed lines and evaluated on synthetic data. Refined
models are indicated with solid lines and evaluated on real data. Please note the log scale on
the x axis as well as the extended range compared to the plots in the main manuscript.

2D keypoint error (px) Tool ADD (mm) Tool Proj2D (px)
Pretraining only 37.03 (25.46) 118.64 (65.02) 34.63 (22.97)
100 samples 50.58 (46.51) 186.33 (108.04) 49.47 (33.49)

+ pretraining 35.71 (29.50) 138.60 (45.27) 33.33 (19.21)
1000 samples 23.46 (19.58) 72.00 (27.54) 18.34 (12.74)

+ pretraining 18.96 (15.13) 62.69 (26.03) 22.68 (10.78)
2337 samples 25.01 (20.86) 61.13 (29.22) 32.84 (13.58)

+ pretraining 18.55 (15.14) 49.30 (25.10) 15.56 (10.89)

Table 2 Evaluation of the effects of the real training set size as well as pretraining on synthetic
data. We report the average error for our combined model as well as the median error in
parentheses.

converges to a pose that is mirrored along the depth axis, as can be seen on the
sample in the last row of Figure 3. Due to the similar architecture, we also observe
these issues in the estimates of the proposed model. To prevent such flipped pose
estimates, a strong prior could be introduced in the uncertainty-PnP.

3.2 Ablation study

To confirm the observations from [5] for our particular scenario, we evaluate the
benefit of pretraining with synthetic data in low-data regimes. For this exemplary
ablation study, we select the combined model and use a simple train/test split in-
stead of k-fold cross validation. We analyze the effect of the number of real training
samples on the model performance as well as the effect of pretraining on synthetic
data. The results are summarized in Table 2. Pretraining the model on synthetic
data significantly improves the model performance for all tested training set sizes.
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Moreover, we found that the pretrained models are less prone to overfitting and
more stable during the training process.
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