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Description of the surgical procedure

Figure S1 shows the simplified version of the hierarchical task decomposition model that we refer to
in Section 3.2 of the main paper. It describes the basic procedure of a hysteroscopic myomectomy in
a flow chart. A description of the individual activities is given in Table S1.

Activity Description

diagnosis The summary of multiple diagnostic activities, which includes the
inspection of the entire uterine cavity and the inspection of the
myoma.

position hysteroscope The activity of positioning the hysteroscope, which is done to
prepare for a cutting, coagulation or handle chips activity.

cutting The activity of cutting off part of the tissue.
coagulation The activity of staunching a bleeding.
clear view The activity of flushing the system to remove blood that opacifies

the view.
handle chips The activity of collecting and extracting the pieces of tissue

(”chips”) that have been cut off.

Tab. S1. Description of the activities performed in a hysteroscopic myomectomy
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Fig. S1. Simplified hierarchical task decomposition model (HTDM) of a hysteroscopic myomectomy
that defines the activities performed during the procedure. The diagnosis task jointly with the steps
of the operative part of the procedure form the set of activities that we considered in the context of
this work.

Hyperparameter optimization for the self-supervised represen-
tation learning.

Here we provide additional details regarding the hyperparameter optimization for the spatio-temporal
models described in Section 4 of the main paper. We performed ten-fold stratified cross-validation
approach for the hyperparameter optimization. To that end, we divided the surgical trajectories into
three categories: Similar to [5], the trajectories whose duration was less than the lower quartile value of
the empirical duration distribution of all trajectories in the data set were classified as short trajectories;
those lasting longer than the upper quartile value were classified as long trajectories, and the remaining
ones as medium trajectories. The data set was split such that the relative abundance of sequences of
these three classes were approximately the same in each fold. Thereby, we ensured that the different
folds were comparable despite the large intersample variance in the data set. The length of a sequence
served as a simple proxy for the comparability of different surgical trajectories.

Finally, at each iteration the training portion of the data (i.e., the data without the fold held out
for cross-validation) was additionally split into the set of sequences to train the model (80%) and a
validation set (20%). The validation set was used to monitor the performance of the model within
each iteration of the cross-validation and to e.g. early stop the training if the validation score has not
improved for 20 epochs. We trained every model until convergence of the validation loss, which took
up to 300 epochs.

2



The hyperparameter settings that we analyzed to identify the deep architecture that performed
best on the VRSHM data set are summarized in Table S2. The performances of the five best encoder-
decoder models among those we analyzed, as well as the performances of two baseline models; a
Alexnet[4] and a Resnet18 [2] trained on single frames from the video sequences, are shown in Table
S3.

Hyperparameter Description Searched Domain

encoder model The chosen pretrained CNN model archi-
tecture

{Alexnet, Resnet18}

weight decay The amount of l2 weight regularization ap-
plied during training

10k for k ∈ {−5, ..., 0}

cnn dropout The amount of dropout applied to the out-
put of the CNN architecture

d−1 for d ∈ {0, ..., 5}

cnn features dim The number of output dimensions of the
encoder model

2k for k ∈ {6, ..., 12}

decoder model The chosen type of the serial model archi-
tecture for the decoder

{LSTM, GRU}

hidden size The number of LSTM/GRU cells in each
layer of the LSTM/GRU decoder

2l for l ∈ {4, ..., 8}

decoder num layers The number of layers of the LSTM/GRU
decoder

{1, .., 4}

decoder dropout The amount of dropout applied between
the layers of the LSTM or GRU in the de-
coder

d−1 for d ∈ {0, ..., 5}

Tab. S2. Overview of the hyperparameters that were tuned during the hyperparameter search. The
hyperparameters in the bottom part of the table are not defined for the baseline models, but only for
the encoder-decoder architectures.
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Model GRU/LSTM Optimizer CV MAE CV STD

Alexnet - Adam 0.13360 0.01959
Resnet18 - Adam 0.13440 0.01984
AlexnetGRU 512∥128∥128∥128∥128 RMSProp 0.09929 0.02584
AlexnetGRU 256∥32∥32 RMSProp 0.10529 0.02517
AlexnetLSTM 512∥128∥128∥128∥28 RMSProp 0.11845 0.04485
AlexnetLSTM 128∥128 RMSProp 0.11466 0.04615
AlexnetAttGRU* 512∥128∥128∥128∥128 RMSProp 0.11974 0.03332

Tab. S3. Performance overview of five of the best performing model configurations analyzed during
the hyperparameter search using the discussed ten fold stratified cross-validation approach. All shown
encoder-decoder models were trained using a l2 weight regularization of 10−5. The first two models
are the CNN models that served as baselines. A ’*’ indicates the application of an attention layer
to the output of the CNN encoder as part of the architecture. The GRU/LSTM column provides
information regarding the architecture of the respective GRU/LSTM layers of the encoder-decoder
models by describing the number of units in the different layers.

Pruned Exact Linear Time (PELT) algorithm

To automatically identify important change points in the multivariate time series given by the learned
spatio-temporal representations as described in Section 5 of the main paper we applied the PELT
algorithm. We here provide a formal description of the respective algorithm.

Algorithm 1: PELT algorithm by [3]

input : A data sequence x1, . . .xn where xi ∈ Rd

A measure of fit C : Rd → R.
A constant penalty term β

output: The change points of the data sequence recorded in cp(n)

1 Initialize F (0) = −β, cp(0) = NULL, R1 = {0}
2 for i← 1 to n do
3 j∗ ← argminj∈Ri

[F (j) + C(xj+1:i) + β]

4 cp(i)← [cp(j∗), j∗]
5 Ri+1 ← {j ∈ Ri ∪ {i} : F (j) + C(xj+1:i) ≤ F (i)}
6 end
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Hidden semi-Markov models

To complement the short description of the hidden semi-Markov models in Section 2.3 of the main
paper, we provide a more formal definition of such models in the following. Formally, an HSMM is a
tuple θ = (S,O,Π, P,B,D), where S is the state set, O is the observation space, Π = {πj | j ∈ S} is the
initial state distribution, P = {pi,j | (i, j) ∈ S ×S} is the transition model, B = {bj(o) | j ∈ S, o ∈ O}
is the emission model and D = {dj(u) | j ∈ S, u ∈ N} is the duration model. The latter allows to
explicitly model the distribution over the number of time steps the system stays in any given state,
which is what distinguishes HSMMs from the simpler hidden Markov models (HMMs). In HMMs,
these distributions are constrained to be geometric and are not explicitly modeled.

Inference in HSMMs can be performed in a similar way as in HMMs. First, one iteratively computes
maximum-likelihood estimates for the parameters of the HSMM using the Baum-Welch algorithm.
Second, one computes the most probable state sequence given the observations, i.e., the maximum-a-
posteriori (MAP) using the Viterbi algorithm [1]. In our setting, after performing inference on a set
of surgical trajectories, the MAP sequence for a specific surgical trial is the sequence of activities A
that best describes the observed data.

Fig. S2. Visualization of a HSMM and its data generating process: A dynamic system described
by a HSMM remains in a state s for a duration d that is sampled from its duration model and then
transitions to another state s′ sampled from the transition model. The state sequence is not observed.
Instead one only observes noisy observations o that depend on the state s of the system and are
sampled according to the emission model. Adapted from [6].

Description of the observables

A variety of different categorical observables was extracted from the continuous and categorical sensor
data. The super set O defined by all observables and their respective realization spaces (domains) as
given in the Table S4 defined the observation space. The observables used for the experiments in the
paper and referred to in Section 6 of the main paper are described in Table S4.
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Observable Description Domain

coagulation pedal An indicator if the pedal that applies volt-
age to the hysteroscope such that it can be
used to coagulate is active.

{On, Off}

cutting pedal An indicator if the pedal that applies volt-
age to the hysteroscope such that it can be
used to cut is active.

{On, Off}

handle movement The description of the movement of the ex-
traction of the hysteroscope.

{forward, still, backward}

pedals yet activated An indicator if one the pedals has already
been activated in the past part of the
surgery.

{True, False}

turbidity An indicator if the camera view is turbid
(as a result of bleeding after cuts).

{True, False}

end of diagnosis The indicator if the first change point of
the update gate 14 is reached, which marks
the end of the diagnosis.

{True, False}

seen last pedal use The indicator, if no pedal will be used in
the remainder of the procedure.

{True, False}

Tab. S4. Overview of the observables derived from the sensor measurements and the self-supervised
learning approach.
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