Online Resource 1. NeuroMol Med

Portaro S, Altamura C, Licata N, Camerino GM, Imbrici P, Musumeci O, Rodolico C, Conte Camerino D, Toscano A, & Desaphy J-F. Clinical, molecular and functional characterization of CLCN1 mutations in three families with recessive Myotonia Congenita. *University of Bari Aldo Moro, Bari, Italy. E-mail: jeanfrancois.desaphy@uniba.it University of Messina, Messina, Italy. E-mail: atoscano@unime.it*

List of genes quantified by real-time PCR with relative Life Technologies assay IDs.

Gene name	Protein name	Assay IDs
CLCN1	CIC-1 voltage-sensitive chloride channel	Hs00892505_m1
SCN4A	Nav1.4 voltage-gated sodium channel α subunit	Hs01109480_m1
SCN1B	Voltage-gated sodium channel auxiliary $\beta 1$ subunit	Hs03987893_m1
KCNMA1	Large conductance Ca^{2+} -activated K^+ channel α subunit	Hs01119498_m1
KCNC4	Kv3.4 voltage-gated K+ channel α-subunit	Hs00428198_m1
KCNE3	MinK-Related Peptide 2 (MiRP2)	Hs00538801_m1
KCNJ2	Kir2.1 inwardly-rectifying K+ channel	Hs00265315_m1
KCNJ18	Kir2.6 inwardly-rectifying K+ channel	Hs00253248_s1
KCNJ11	Kir6.2 inwardly-rectifying K+ channel	Hs00265026_s1
ABCC9	SUR2A ATP-binding cassette	Hs01072316_m1
HPRT1	hypoxanthine phosphoribosyltransferase 1	Hs02800695_m1
ACTB	β-actin	Hs99999903_m1
B2M	β2-microglobulin	Hs00984230_m1

Online Resource 2. NeuroMol Med

Portaro S, Altamura C, Licata N, Camerino GM, Imbrici P, Musumeci O, Rodolico C, Conte Camerino D, Toscano A, & Desaphy J-F. Clinical, molecular and functional characterization of CLCN1 mutations in three families with recessive Myotonia Congenita.

University of Bari Aldo Moro, Bari, Italy. E-mail: jeanfrancois.desaphy@uniba.it

University of Messina, Messina, Italy. E-mail: atoscano@unime.it

Amino acid alignment of CLC proteins with Clustal 2.2

Species-specific ClC-1:

-	-			
Human	(T82)	IYGHHKEQFSDREQDIGMPKK <mark>T</mark>	GSSSTVDSKDEDHYSKCQDCIH	104
Rat	(T82)	IYGHHKEQYSYQAQDRGIPKK <mark>T</mark>	DSSSTVDSLDEDHYSKCQDCVH	104
Mouse	(M82)	IYGHQKEQYSYKAQDGGMPKK <mark>M</mark>	GSSSTMDSLDEDHYSKCQDCVH	104
Dog	(M12)	DKEQDTGMSKK <mark>M</mark>	GSSESMDSKDEDHYSKCQGCVR	34
Human	CLC member	s:		
ClC-2	(R56)	IRLGGPEPWKGPPSSR	ARPELLEYG-RSRCARCRVCSV	77
ClC-Ka	(F11)	MEELVGLREG <mark>F</mark>	SGDPVTLQELWGPCPHIRRAIQ	33
ClC-Kb	(S11)	MEEFVGLREG <mark>S</mark>	SGNPVTLQELWGPCPRIRRGIR	33
ClC-3	(V82)	NGGSINSSTHLLDLLDEPIPG <mark>V</mark>	GTYDDFHTIDWVREKCKDRERHRRINSKKK	112
ClC-4	(V24)	NAGAMSGSGNLMDFLDEPFPD <mark>V</mark>	GTYEDFHTIDWLREKSRDTDRHRKITSKSK	54
ClC-5	(V11)	MDFLEEPIPG <mark>V</mark>	GTYDDFNTIDWVREKSRDRDRHREITNKSK	41
ClC-6	(X)	ETQEEEDEILP	RKDYESLDYDRCINDPYLEV	64
ClC-7	(D72)	SALFRVGHMSSVELDDELLDPD	MDPPHPFPKEIPHNEKLLSLKYESLDYDNSENQLFLEE	110

Species-specific ClC-1:

	_				
Human	(G270)	ICAAVLSKFMSVFCG	VYEQPYYYSDILTV <mark>(</mark>	CAVGVGCCFGTPLGGVLFSIEVT	293
Rat	(G270)	ICAAVLSKFMSMFSG	VYEQPYYYTDILTV <mark>(</mark>	CAVGVGCCFGTPLGGVLFSIEVT	293
Mouse	(G270)	ICAAVLSKFMSMFSG	VYEQPYYYTDILTV <mark>(</mark>	CAVGVGCCFGTPLGGVLFSIEVT	293
Dog	(G200)	ICAAVLSKFMSMFCG	VYEQPYYYTDMLTV <mark>(</mark>	CAVGVGCCFGTPLGGVLFSIEVT	223
Human	CLC member	rs:		-	
ClC-2	(A243)	MCAALLSKFLSLFGG	IYENESRNTEMLAA <mark>/</mark>	CAVGVGCCFAAPIGGVLFSIEVT	266
ClC-Ka	(A204)	MIAAYLGRVRTTTIG	EPENKSKQNEMLVA <mark>A</mark>	AAVGVATVFAAPFSGVLFSIEVM	227
ClC-Kb	(A204)	MMAAYLGRVRTTTIG	EPENKSKQNEMLVA <mark>A</mark>	AAVGVATVFAAPFSGVLFSIEVM	227
ClC-3	(A317)	CCGNIFSYLFPK	YSTNEAKKREVLSA <mark>A</mark>	SAAGVSVAFGAPIGGVLFSLEEV	340
ClC-4	(A259)	CCGNFFSSLFSK	YSKNEGKRREVLSA <mark>/</mark>	AAAGVSVAFGAPIGGVLFSLEEV	282
ClC-5	(A246)	CCGNILCHCFNK	YRKNEAKRREVLSA <mark>A</mark>	AAAGVSVAFGAPIGGVLFSLEEV	269
ClC-6	(G245)	VVGAGLPQFQSISLRKIQFNE	FPYFRSDRDKRDFVSA <mark>(</mark>	AAAGVAAAFGAPIGGTLFSLEEG	268
ClC-7	(G292)	VIAAGISQGRSTSLKRDFKIE	FEYFRRDTEKRDFVSA <mark>C</mark>	AAAGVSAAFGAPVGGVLFSLEEG	315

Species-specific ClC-1:

-			
Human	(R453)	LGQSAVWIHP <mark>R</mark> VNVVIIIFLFFVMKFWMSIVATTMPIPCGGFMPVFVLGAAFGRLVGEIM 5	502
Rat	(Q453)	LGQSAVWIHP <mark>Q</mark> VNVVIIILLFFVMKFWMSIVATTMPIPCGGFMPVFVLGAAFGRLVGEIM 5	502
Mouse	(Q453)	LGQSAVWLHP <mark>Q</mark> VNVIIIILLFFVMKFWMSIVATTMPIPCGGFMPVFVLGAAFGRLVGEIM 5	502
Dog	(R383)	LGRSAVWIHP <mark>R</mark> VNVIIIIFLFFIMKFWMSIVATTMPIPCGGFMPVFVLGAAFGRLVGEIM 4	432
Human	CLC member	s:	
ClC-2	(R428)	PSTSQAWNPP <mark>R</mark> ANVFLTLVIFILMKFWMSALATTIPVPCGAFMPVFVIGAAFGRLVGESM 4	477
ClC-Ka	(R395)	QHLWWEWYHP <mark>R</mark> FTIFGTLAFFLVMKFWMLILATTIPMPAGYFMPIFILGAAIGRLLGEAL 4	444
ClC-Kb	(R395)	QHLWWEWYHP <mark>R</mark> FTIFGTLAFFLVMKFWMLILATTIPMPAGYFMPIFVYGAAIGRLFGETL 4	444
ClC-3	(X)	PAGIGVYSAIWQLCLALIFKIIMTVFTFGIKVPSGLFIPSMAIGAIAGRIVGIAV 5	545
ClC-4	(X)	PAGVGVYTAMWQLALALIFKIVVTIFTFGMKIPSGLFIPSMAVGAIAGRMVGIGV 4	487
ClC-5	(X)	PAGVGVYSAMWQLALTLILKIVITIFTFGMKIPSGLFIPSMAVGAIAGRLLGVGM 4	473
ClC-6	(G458)	AILQLFHQD- <mark>G</mark> TFSPVTLALFFVLYFLLACWTYGISVPSGLFVPSLLCGAAFGRLVAN 5	505
ClC-7	(G483)	SVVSLFHDPP <mark>G</mark> SYNPLTLGLFTLVYFFLACWTYGLTVSAGVFIPSLLIGAAWGRLFG 5	529

Online Resource 3. NeuroMol Med

Portaro S, Altamura C, Licata N, Camerino GM, Imbrici P, Musumeci O, Rodolico C, Conte Camerino D, Toscano A, & Desaphy J-F. Clinical, molecular and functional characterization of CLCN1 mutations in three families with recessive Myotonia Congenita.

University of Bari Aldo Moro, Bari, Italy. E-mail: <u>jeanfrancois.desaphy@uniba.it</u> University of Messina, Messina, Italy. E-mail: <u>atoscano@unime.it</u>

Three dimensional ribbon representation of the CIC-1 channel homodimer model based upon the structure of CIC-ec1 viewed front the plane of the membrane. The two subunits are shown in green and yellow with CI- ions (blue spheres) located in the pore of each subunit. Myotonic mutations are shown in heterozygosity for p.G190S (red) and p.T82A (cyan) (A), p.G190S and p.R453W (grey) (B), and homozygosity for p.G270V (red in C).

Online Resource 3. NeuroMol Med

Portaro S, Altamura C, Licata N, Camerino GM, Imbrici P, Musumeci O, Rodolico C, Conte Camerino D, Toscano A, & Desaphy J-F. Clinical, molecular and functional characterization of CLCN1 mutations in three families with recessive Myotonia Congenita.

University of Bari Aldo Moro, Bari, Italy. E-mail: <u>jeanfrancois.desaphy@uniba.it</u> University of Messina, Messina, Italy. E-mail: <u>atoscano@unime.it</u>

Membrane Potential (mV)

and p.R453W myotonic hClC-1 channels in high intracellular chloride. The deactivating currents measured at the beginning of test voltage pulse between -200 and -60 mV were fit with a double exponential decay function (Desaphy et al. 2013). The fit parameters include a fast time constant (τ_{fast} , 10-ms range), a slow time constant (τ_{slow} , 100-ms range), and their respective contribution to total current (A_{fast}, A_{slow}), plus the contribution of residual steady state current (relative C).

Online Resource 5. NeuroMol Med

Portaro S, Altamura C, Licata N, Camerino GM, Imbrici P, Musumeci O, Rodolico C, Conte Camerino D, Toscano A, & Desaphy J-F. Clinical, molecular and functional characterization of CLCN1 mutations in three families with recessive Myotonia Congenita.

University of Bari Aldo Moro, Bari, Italy. E-mail: <u>jeanfrancois.desaphy@uniba.it</u> University of Messina, Messina, Italy. E-mail: <u>atoscano@unime.it</u>

Chloride currents generated by wild-type hCIC-1 channels and myotonic mutants in low intracellular chloride condition. **A)** Typical chloride currents recorded in HEK293 cells transfected with wild-type, p.T82A, p.R453W, and p.G270V hCIC-1 variants. Cells were held at -95 mV and 400 ms voltage pulses were applied from -150 to +150 mV in 10-mV intervals every 3 seconds. For clarity only current traces obtained every 20 mV are shown. Chloride currents displayed similar kinetics, but p.G270V currents had reduced amplitude. **B)** The steady-state current density-voltage relationships show a reduced current density of p.G270V channels. **C)** The voltage dependence of activation were fit with a Boltzmann function (eq. 1). Fit parameters are reported in Table 1. Only p.G270V channels displayed a positively-shifted voltage dependence with respect to WT.

Online Resource 4. NeuroMol Med

Portaro S, Altamura C, Licata N, Camerino GM, Imbrici P, Musumeci O, Rodolico C, Conte Camerino D, Toscano A, & Desaphy J-F. Clinical, molecular and functional characterization of CLCN1 mutations in three families with recessive Myotonia Congenita.

University of Bari Aldo Moro, Bari, Italy. E-mail: <u>jeanfrancois.desaphy@uniba.it</u> University of Messina, Messina, Italy. E-mail: <u>atoscano@unime.it</u>

Chloride currents were recorded in tsA201 cells transfected with either p.G190S or p.R453W alone, or with both mutants together, using high intracellular chloride condition. (A) Family of chloride currents generated by cotransfected p.G190S and p.R453W mutants. The cell was held at 0 mV and voltage pulses were applied from -200 to +200 mV in 10-mV intervals every 3 seconds. For clarity only current traces obtained every 20 mV are shown. The mean I-V curves for instantaneous (B) and steady-state (C) currents are shown for p.R453W, p.G190S, and co-expressed p.G190S/p.R453W. In yellow are reported the algebraic sum of current densities calculated for p.G190S and p.R453W expressed alone. The yellow points are quite superimposed to the I-V relationship for co-expressed p.G190S + p.R453W. (D) The activation curves for co-expressed p.R453W + p.G190S is in between the relationships for p.G190S and p.R453W expressed alone. The Boltzmann fit parameters are reported in Table 1 of the manuscript.

Online Resource 5. NeuroMol Med

Portaro S, Altamura C, Licata N, Camerino GM, Imbrici P, Musumeci O, Rodolico C, Conte Camerino D, Toscano A, & Desaphy J-F. Clinical, molecular and functional characterization of CLCN1 mutations in three families with recessive Myotonia Congenita. *University of Bari Aldo Moro, Bari, Italy. E-mail: jeanfrancois.desaphy@uniba.it University of Messina, Messina, Italy. E-mail: atoscano@unime.it*

Description of ion channels genes quantified by real-time PCR.

	-	
Channel	Channel (dys)function	Some References
(gene)		
CIC-1	Voltage-sensitive chloride channel. Mutations cause	Desaphy et al., <i>Exp Neurol</i> 248:
(CLCN1)	Myotonia Congenita	530-540, 2013
Nav1.4	Skeletal muscle sodium channel α -subunit. Mutations cause	Desaphy et al., Neurology 57:
(SCN4A)	Paramyotonia Congenita, Sodium Channel Myotonias,	1849-1857, 2001
	hyperkalemic Periodic Paralysis, hypokalemic Periodic	
	Paralysis type 2.	
	Is the molecular target of the antimyotonic drug mexiletine.	
β1	Nav1.4 auxiliary subunit. Mutations cause genetic epilepsy	Wallace et al., Nat Genet 19:
(SCN1B)	with febrile seizures plus (GEFS)+	366-370, 1998; Brackenbury and
		Isom, Front Pharmacol 2: 53,
		2011
Slo1	Large conductance Ca ²⁺ -activated K+ channel. Is one of the	Tricarico et al., <i>FASEB J</i> 18:
(KCNMA1)	target for the antimyotonic drug acetazolamide	760-761, 2004.
Kv3.4	Voltage-gated K+ channel α-subunit. Contributes to action	Abbott et al., <i>Cell</i> 104: 217–231,
(KCNC4)	potential repolarization and resting potential	2001
MiRP2	voltage-gated K+ channel auxiliary subunit. Contributes to	Abbott et al., <i>Cell</i> 104: 217–231,
(KCNE3)	resting potential	2001
Kir2.1	Inwardly-rectifying K+ channel. Mutations cause Andersen-	Tristani-Firouzi and Etheridge,
(KCNJ2)	Tawil syndrome including periodic paralysis	Pflugers Arch 460: 289-294,
		2010.
Kir2.6	Inwardly-rectifying K+ channel. Mutations may be linked to	Cheng et al., <i>J Biol Chem</i> 286:
(KCNJ18)	thyrotoxic and sporadic periodic paralysis, although this has	27425-27435, 2011; Kuhn et al.,
	been recently challenged	J Neurol Neurosurg Psychiatry
		2015
Kir6.2	ATP-sensitive inwardly-rectifying K+ channel.	Tricarico et al., J Clin Invest 103:
(KCNJ11)	Channel activity is modified in hypokalemic Periodic Paralysis	675-682, 2001; Flagg et al.,
		<i>Physiol Rev</i> 90: 799-829, 2010