Appendix A: basic concepts in (bio)mechanics

Kinematics describes the movement of an object, such as e.g. an infant's head, by means of specifying its position (location and orientation), velocity and acceleration over time. In case of the object **translating** (changing location) from left to right in Figure A1, its translational (or linear) velocity v_i is the rate of change of the position x over time t:

$$v_l = \frac{dx}{dt}$$

and acceleration a_l is the rate of change of the velocity v over time:

$$a_l = \frac{dv_l}{dt}.$$

Usually, x is measured in meters (m), v_l is measured in meters per second (m/s) and a_l is measured in m/s². In Figure 1, the lengths of the arrows indicate the magnitude of a speed or acceleration. In case of a constant linear acceleration a_l pointing right, not only the position of any point on the object changes, but the speed of any point on the object will also increase between Time 1 and Time 2, making the distance traveled in the next step even bigger. If the object does not deform and there is only linear (translational) motion, all points on the object experience the same speed and acceleration.

In case of **rotational** movement (changing orientation), position, velocity and acceleration can also be expressed in angular coordinates. In the rotation example in Figure 1, the position of the head is specified by its angle θ in radians. In angular coordinates, velocity is expressed as the rate of change of the angle: angular velocity (ω in rad/s) and similarly the angular acceleration α (in rad/s²) is the rate of change of the angular velocity.

If the object rotates around a point (point O in Figure 1) and there is no translation, all points on the object re-orient at the same rate because they experience the same angular velocity and angular acceleration. However, all points except the center of rotation O experience translation, with points located at a larger distance r from point O translate more and faster than points closer to point O. This is because points located further away from O travel along larger circles and thus have to travel a larger distance with each rotation.

Consider an arbitrary point on the circle in the bottom left section of Figure 1, located at a distance r from point O at angle θ_1 at Time 1. At that instance there is an angular velocity ω_1 and a constant angular acceleration α . Due to the angular velocity, the point on the circle ends up at angle θ_2 by traveling along the circle perimeter, while the angular velocity increases to ω_2 due to the angular acceleration.

All points of the object, except point O (which only rotates), translate along a circular path around point O. The radius of that circular path is defined by the distance r of the point from O. The translational velocity with which the point travels along that circular path is called the tangential velocity and is related to ω and r by:

 $v_t = \omega \cdot r.$

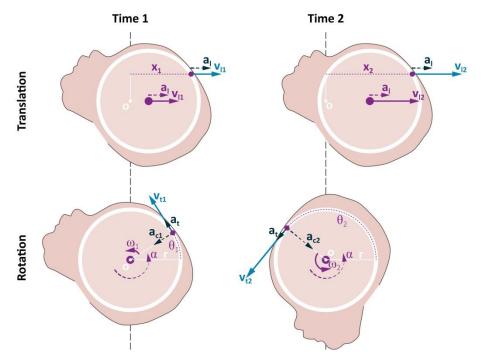


Figure A1: Kinematics of an infant head, showing (top row) the translational (or linear) velocities and accelerations occurring during pure translation of the head, and (bottom row) the angular velocities and accelerations and translational (or linear) velocities and accelerations occurring during pure rotation of the head. The lengths of the arrows indicate the magnitude of the velocities and accelerations. Symbols are explained in the main text. Subscripts 1 and 2 are used to indicate values of variables at Time 1 (left) and Time 2 (right), respectively, which are two arbitrary, successive moments in time.

Consequently, as the angular acceleration α increases the angular velocity from ω_1 at Time 1 to ω_2 at Time 2 and r is constant, the point on the perimeter of the circle also experiences a translational acceleration a_t defined by:

$$a_t = \frac{dv_t}{dt} = \frac{d\omega}{dt} \cdot r = \alpha \cdot r,$$

which increases the tangential velocity from v_{t1} at Time 1 to v_{t2} at Time 2. As shown in Figure 1, the tangential velocity not only changes in magnitude, but also in direction, as it travels along the circular path. The point moving along the circle would, if not connected to the object, move away from point O in the direction of v_t . However, because the point on the circle is connected to the object, it is constantly being pulled towards point O, as if it was a ball tied to a rope that is being swung around. The magnitude of this translational acceleration in radial direction, better known as the centripetal acceleration a_c is defined by:

$$a_c = \frac{(v_t)^2}{r} = \omega^2 \cdot r.$$

Summarizing, for an object rotating as a non-deforming whole around a center of rotation:

- points on the object further away from the center of rotation experience larger translational velocities and translational accelerations than points closer to the center of rotation,
- the rotational velocity and angular acceleration are identical for all points along the object.

Dynamics deals with the description of forces acting on an object and the behavior of deformable objects under loading. In this brief introduction, we will limit ourselves to elastic structures. In biomechanics, including IIHII modelling, such spring-like structures play an important role.

Elastic behavior is characterized by the amount of pressure applied to a structure (called stress) and the consequential length-change or deformation due to this pressure. In the literature, the most common ways to express this length change are by means of *stretch ratio* and *strain*. The stretch ratio λ is simply the new length divided by the original length: $\lambda = \frac{l}{l_0}$, while strain ε is the length change as a percentage of the original length: $\varepsilon = \frac{\Delta l}{l_0} = \frac{l-l_0}{l_0}$. For example, if a bridging vein initially has a length of 2 cm and is stretched to a length of 2.5 cm it's stretch ratio = 2.5 cm/2 cm = 1.25 and it's strain = 0.5 cm/2 cm = 0.25 = 25\%. In the main part of the paper, we will exclusively use stretch ratios.

Appendix 2 – Search Queries used to find papers describing aninal, mechanical and mathematical models for IIHII

Q1. ((finite[All Fields] AND ("elements"[MeSH Terms] OR "elements"[All Fields] OR "element"[All Fields]) AND shaken[All Fields]) OR (((biomechanical[All Fields] AND shaken[All Fields]) OR (("models, animal"[MeSH Terms] OR ("models"[All Fields] AND "animal"[All Fields]) OR "animal models"[All Fields] OR ("animal"[All Fields] AND "model"[All Fields]) OR "animal models"[All Fields] OR ("animal"[All Fields] AND "model"[All Fields]) OR "animal models"[All Fields] OR ("animal"[All Fields] AND "model"[All Fields]) OR "animal models"[All Fields] OR ("animal"[All Fields] AND "baby"[All Fields]) OR "animal model"[All Fields]) OR "shaken baby syndrome"[MeSH Terms] OR ("shaken"[All Fields] AND "baby"[All Fields] AND "syndrome"[All Fields]) OR "shaken baby syndrome"[All Fields] OR ("shaken"[All Fields] AND "baby"[All Fields]) OR "shaken baby syndrome"[All Fields] OR ("shaken"[All Fields] AND "baby"[All Fields]) OR "shaken baby syndrome"[All Fields] OR ("shaken"[All Fields] AND "baby"[All Fields]) OR "shaken baby syndrome"[All Fields] OR ("shaken"[All Fields] AND "baby"[All Fields]) OR "shaken baby"[All Fields] OR (non[All Fields] AND accidental[All Fields] OR ("shaken"[All Fields] AND "baby"[All Fields]) OR "shaken baby"[All Fields] OR ("craniocerebral trauma"[MeSH Terms] OR ("craniocerebral"[All Fields] AND "trauma"[All Fields]) OR "craniocerebral trauma"[All Fields] OR ("head"[All Fields] AND "injury"[All Fields]) OR "head injury"[All Fields]) OR "craniocerebral trauma"[All Fields] OR "simulation"[All Fields]] OR "simulation"[All Fields]) OR "head injury"[All Fields]) AND model[All Fields]))) OR (("Simulation"[Journal] OR "simulation"[All Fields]) AND shaken[All Fields])

Q2. (((((((biomechanical) OR animal model) OR finite element) OR simulation) OR mannequin) OR dummy)) **AND** (((shaken baby) OR abusive head trauma) OR non accidental head)

Q3. (((Biomechanical Phenomena/methods [Mesh]) OR (((((((biomechanical model) OR biomechanical evaluation) OR biomechanical study) OR biomechanical) OR biomechanical analysis) OR "Models, Neurological"[Mesh]) OR "Models, Theoretical"[Mesh])) AND ((((((((Hematomas, Subdural) OR Subdural Hematomas) OR Subdural Hematoma) OR Hemorrhage, Subdural) OR Hemorrhages, Subdural) OR Subdural Hemorrhage) OR Subdural Hematoma, Traumatic) OR Subdural Hemorrhage) OR Subdural Hematoma, Traumatic) OR Subdural Hemorrhages) OR Hematoma, Traumatic Subdural) OR Hematomas, Traumatic Subdural Hematomas, Traumatic Subdural Hematomas) OR Traumatic Subdural Hematomas)

Q4. (((biomechanic* OR dynamic* OR kinematic* OR motion OR force OR impact) AND (phenomena OR method OR model OR evaluation OR study OR analysis)) OR ("finite element" OR "FEM") OR ((animal OR neurological OR theoretical) AND model) OR simulat* OR doll OR mannequin OR dummy OR anthropomorphic) AND ((shake* AND (infant OR baby OR impact)) AND ("subdural Hematoma" OR "subdural Hemorrhage" OR ((craniocerebral OR head OR retinal) AND (injury OR trauma OR bleeding))) AND (("non accidental" OR "nonaccidental" OR "non-accidental") OR inflict* OR violen* OR abus* OR shaking))

Pubmed was searched using queries Q1 to Q4 and combining their results. Scopus was searched using query Q4.

General				Model description					Model input						Kinematic response				Dynamic resp	onse				Injury criteri	um		Conclusions	Remarks
Authors	Title	Reference	Aim	Type of model	Modelled entities	Mat. props	Repr. Age	Repr. Weight	Type of shaking	Number of subjects	Instructions to	Duration of	Frequency of	Amplitude of	(peak) linear	(peak) linear	(peak) angular	(peak) angular	skull	eye	brain	veins	neck	type of	source of	references		
	Study of an infant brain subjected to periodic motion via a custom experimental apparatus design and finite element modelling	J Biomech 43 (2010) 2887-96	Estimate brain motion and bridging vein streches	Physical	Spherical skull (diameter=10 cm), fontanel (size=4cm), Single volume brain, cerebrospinal fluid (Smm), bridging veins (marker positions), includes blood circulation	Given in Table 2		N/A. TRL crash dummy body mass is 9.5 kg	Machine shaking	shaking	subjects	shaking	shaking ~ 3 Hz (Fig 9)	shaking	acceleration	velocity	acceleration	velocity	SKUII	cyc	Drain	Markers move 1-2 mm during shaking	HECK	cryterium	tresholds		Qualitative statement that skull with fontanel might be more vunerable to IHI-STthan closed skull.	Suggestion that resonance effect might play role in IHI-ST.
Cirovic, Srdjan Freddolini, Marco Goodwin, Rachel Zimarev, Daniel	Shaken Mannequin Experiments: Head Motion Pattern and Its Potential Effect on Blood Pressure	Journal of Forensic Biomechanics 3 (2012) 1-4	Estimate head motion and blood pressure fluctuations in heac during shaking		= 9,2 cm, weight = 480 g), neck flexible link (4	torso=wood,		P3/4: body 9 kg. Prop: body 1.5 kg	Human shaking	10 (5 male, 5 female) (head kin expt). 9 (6 m ale, 3 female) (blood pressure expt)	"as violently as possible"	10 s for prop, 5 s for P3/4	3.9 averaged for both dolls(page 3)		X-direction: 45 m/s^2 (P3/4), 76 m/s^2 (prop). Z-direction: 30 m/s^2 (P3/4), -50 m/s^2 (prop). (Fig 3). Note: there is a net linear acceleation in negative Z- direction for prop. 45 m/s^2 (P3/4), 76 m/s^2 (prop) (Table 1)			25 rad/s (P3/4) 40 rad/s (prop) (Table 1)				blood presure is increased in prop during shaking. dP 25-35 +/- 10 mmHG, dPmax 65- 60 +/- 15 mmHg					increased bloodpressure and negative g effect in prop during shaking might contribute to eye haemorraging often found in IHI-ST	
	Can shaking alone cause fatal brain injury? A biomechanical assessment of the Duhaime shaken baby syndrome model		Parametric study of effects of neck type and head weight or angular accelerations during shaking.		Head (weight=830 gr; diameter ~10 cm), neck single hinge and neck flexible link (length = 4 cm), torso.	neck: red hollow tubing (Harris- Scientific, Cardiff). Torso: cotton and metal. Paper states that model parameters chosen in accordance		Head 830 g. Body mass 3-4 kg	Human shaking	1(initial experiments: 11 volunteers, 7 female, 4 male)	Shaking in anterior-posterior dirrection. Gravity assisted shaking. (Saggital plane)				1736 m/s ⁵ 2 (max value) 1488 m/s ⁵ 2 (averaged over parameter combinations) (table 3)	value), 8.6 m/s (averaged over	rad/sec^2 (Fig 1). Worst case during gravity assisted shaking	61 (max value), 51 (averaged over different parameter combinations (table 3)						$\Delta \omega - \alpha$ plots, scaled for brainmass.	studies	Margulies (1998),	Qualitative: one cannot conclude that shaking alone cannot cause fatal head injury. Critique on scaling injury thresholds.	mentions occiput- back and chin-chest impacts and critsizes use of scaled animal tresholds. Paper suggest cumulative effect of repetitive
Duhaime, A. C. Gennarelli, T. A. Thibault, L. E. Bruce, D. A. Margulies, S. S. Wiser, R.	The shaken baby syndrome. A clinical, pathological, and biomechanical study	J Neurosurg 66 (1987) 409-15	Test if infants particularly susceptible to injury due to shaking because of large head and weak neck make	Physical.	Head (diameter ~10 cm), neck single hinge, neck flexible link (length ~ 4cm), torso. Neck hinge-skull base = 3.3cm.	to those of Duhaime et N/A	1 mo	head 770-870g. Body 3-4 kg.	Human shaking	NA, both male and female.	Violent shaking in anterior-posterio direction. At least 20 trials per neck condition		~ 4 Hz (Fig. 1)		9.29 G tangential acceleration (mean of 69 trials) (Table 6). Tangential acceleration ranges between 5.70 G and 13.85 G dept on neck type (table 7)		rad/sec^2 at vertex, averaged	neck types and						$\Delta \omega - \alpha$ plots, scaled for brainmass.	from primate experiments " not	about duration and [16] Thibault and Gennarelli	ST is not usually caused by shaking alone. More likely that	sub-letal loading. y
	Dynamic response and damage estimation of infant brain for vibration	31st International Modal Analysis Conference on Structural Dynamics, IMAC (2013) 11-18	study bridging vein stretch under various vibration frequencies	Physical, modified CRABI-6	Skull, flexible neck, torso, single volume brain (silicon gel), cerebrospinal fluid, bridging veins (marker positions), Falx & tentorium.	Tables 2.2 - 2.5	6 mo	body 7.8kg (see crabi website http://www.hu maneticsatd.co m/crash-test- dummies/childr en/crabi-6mo)	Machine shaking				2.5 Hz, 3 Hz	3 cm, 4 cm, 5 cm All combination s of freq and amplitudes tried.								At freq = 3 Hz and amplitude > 4 cm, stretch ratio > 1.5. And 1.0-1.1 otherwise.(F ig 2.5 2.6)		vein stretch		(1988)	Qualitative: shaking frequency of 3 Hz is risk due to respons in bridigng veins. Lower freqs (e.g. cradling) no risk.	
Willey, Edward N. Galaznik, John G	Biomechanical Evaluation of head kinematics during infant shaking versus pediatric activities of daily living.	Journal of forensic biomechanics 2 (2011) 1-9		Physical. CRABI-12and NCSBS demonstration doll			CRABI-12 mo, NCBS N/A		Human shaking	9 (7 male, 2 female), 20-77yo	Mild shaking, gravity assisted shaking, aggressive repetitive horizontal shaking. 3 times per doll and condition. 3 trials per doll		3-5 Hz		3.2-7.6 G (CRABI-12), 3.6- 9.9 G (NCSBS-doll)		364-1068 rad/sec^2 (CRABI- 12), 502-1587 rad/sec^2 (NCSBS- doll) at back of head	rad/s (NCSBS- doll) at back of						390. α > 10000	impact studies.	Preitere et al (2006) [39] Van Ee et al (2009)	Qualitative: shaking unlikely to be the primary cause of DAI. Values durinbg shaking are more or less the same for child in jumperoo	poorly explained.

General				Model description					Model input						Kinematic response				Dynamic resp	onse				Injury criteriu	um		Conclusions	Remarks
Authors	Title	Reference	Aim	Type of model	Modelled entities	Mat. props	Repr. Age	Repr. Weight	Type of shaking	Number of subjects shaking	s Instructions to subjects	Duration of shaking	Frequency of shaking	Amplitude of shaking	(peak) linear acceleration	(peak) linear velocity	(peak) angular acceleration	(peak) angular velocity	skull	eye	brain	veins	neck	type of cryterium	source of tresholds	references		
Miyazaki, Y.	The mechanism of shaken baby syndrome based on the visualization of intracranial brain motion	Japanese Journal o Neurosurgery 24 (2015) 468-476	f Visually determine bridging vein stretch during shaking	Physical. Modified CRABI-6	Skull, torso, single volume brain, cerebrospinal fluid	Unable to determine from paper (Jananese)			Human shaking		Shaking doll while keeping it upright ("standing"") and while the doll is sitting ("sitting"') (Fig 2)		~ 4 Hz (estimated from Fig. 4)									stretch ratio up to 4.0 - during shaking (Fig 4). Peak stretches of 5 and 3.5 for ""sitting" and "standing" shake. (Fig 7)		stretch ratio in bridging veins	cadaver	et al. (2006)	(from abstract) (relative displacements in violent shaking exceed thresholds for bridging vein cases. Values were larger in shaking than in ow height falls. Injury mechanism is reverse rotational motion between skull and brain due to change in rotation direction at endpoints. This is not present in falls	Japanese. Informatin derived from abstract, Figures and t their captions.
Prange, M. T. Coats, B. Duhaime, A. C. Margulies, S. S.	Anthropomorphic simulations of falls, shakes, and inflicted impacts in infants	J Neurosurg 99 (2003) 143-50	Compare rotationa deceleration of head from different types of free falls to those during impact and shaking.	t	Skull (diameter = 12.6 cm, weight = 1.13 kg), single hing neck (distance from COM head to centre of rotation = 9.2 cm, compares to C5-C6).	, duty stainless steel hinge. Skull: polypropylen	1	body 4.83kg	Human shaking	6 (4 male, 2 female)	Maximum effort, no release. 10 trials per subject.	last cycle	~2.3 Hz (Fig 2)	NA. Shake with largest amplitude is analysed			Typical example: 2640 rad/sec^2 (Fig 2). Subject averaged data: ~4000 rad/sec^2	28 rad/s (Fig 2).No subject averaged data available. Measured at apex					ł	plots, scaled for brainmass.	studies, primate experiments , angular velocities	Gennarelli et al (1982) (32) Margulies et al (1990), (39) Pincemaile et al (1988)	 – α are larger in impacts than is shaking. Falls and shakes have similar Δω 	1
Tomlinson, R. A. Taylor, Z. A.	Photoelastic materials and methods for tissue biomechanics applications			Physical. 2D sagittal gelatine brain slice	single volume brain	Brain: gelatine / water in proportion 2:10, giving compressive modulus ~ 50 kPa.	N/A	N/A	Machine shaking					Max amplitude is 7.2 G							Max shear stress is 1150 Pa at brainstem (pg 081208- 6) and 1180 (pg 081208- 8)			treshold for permanent braindamag e is 20 kPa (no ref given)	N/A		Qualitative: results are in agreement with Duhaime: stresses in shaking are much smaller than threshold Qo kPa for damage. But state that model used is simple.	
Yamazaki, J. Yoshida, M. Mizunuma, H.	Experimental analyses of the retinal and subretinal haemorrhages accompanied by shaken baby syndrome/abusive head trauma using a dummy doll	Injury 45 (2014) 1196-206		Physical. Chou-chou g baby doll with prop eye model.		, Optimal percentage agar gel is 0.5% for infant vitreous body, based on surgical experience, giving G=0.7 kPa (Fig 5b). Experiments reported with 1% agar gel.		head/skull 800g. Mass of doll is 4 kg.		6 (5 female, 1 male)	Three shaking modes: 1. "fast". 2 "large amplitude" 3. "synchronized" Experments reported with freely chosen shaking mode and synchronized shaking (tables 2 & 3).		1.68 (synchronize d) - 2.45 (no instruction to subject) (tables 2 & 3)		averaged values of peak lin acceleration 20- 60 m/s^2 at head of doll. (pg 1200). Freely chosen: 46 m/s^2 (averaged over subjects). Synchronized: 60 m/s^2 (averaged over subjects) (tables 2&3).					0.85 kPa (compressiv e). 0.62 kPa (tensile) overaged over subjects (Tables 2 and 3)				Timeintegra lof stresses in eyeball, comparision of shaking and fall.	N/A		Qualitative: mode of shaking is important for model response. Stresses proportional to accelerations. Timeintegral of eyeballstress in 1 cycle of shaking is larger than during fall.	F

General				Model description			_		Model input						Kinematic response				Dynamic resp	oonse				Injury criter	ium		Conclusions	Remarks
Authors	Title	Reference	Aim	Type of model	Modelled entities	Mat. props	Repr. Age	Repr. Weight	Type of shaking	Number of subjects shaking	Instructions to subjects	Duration of shaking	Frequency of shaking	Amplitude of shaking	(peak) linear acceleration	(peak) linear velocity	(peak) angular acceleration	(peak) angular velocity	skull	eye	brain	veins	neck	type of cryterium	source of tresholds	references		
Jenny, C. Shams, Rangarajan, I Fukuda, T.	T Development of a biofidelic 2.5 kg 9, infant dummy and its application to assessing infant head trauma during violent shaking	Proceedings of the 30th International Workshop on Human Subjects fo Biomechanical Research (2002)		Physical. Aprica doll. Bodyweight = 2.5 kg.	Skull (weight = 772 gr, diameter = ~11 cm), single hinge neck (length = 53 mm), torso (weight = 1.2 kg).			10th percentile 2.5 kg japanese child. Skull/head 800g, torso 1.2kg. Data in table 1 specifies weights for single legs and arms. Then you get 2.52 kg.	Human	1 Japanese male		4s	4-5 Hz		Max values: 27.7 G at head centre of gravity. 67.8 G at vertex Mean values: 26.2 G (centre of mass), 64.8 G (vertex). Averaged over 5 trials (table 2)		13.252 rad/sec^2 Max value for all trials. (page 139)	value for all									Only statement that kinematic parameters measured are larger than those measured by Duhaime.	
Bertocci, G	 , Biomechanical Response of the Infanti i, Head to Shaking: An Experimental Investigation , and the second sec	J Neurotrauma 34 (2017) 1579-1588		Physical. Prop Aprica doll.	Skull (weight=772 g), neck (len gth=53 mm, weight=62 g), torso (weight=1244 g), arms, legs			Bodyweight = 2.6 kg.	Human	1 Japanes male	"violently shake dummy fore-aft for 3-4 sec"	3-4 sec. 5 trials of at least 12 cycles/trial.	4 Hz.	N /A			7035 rad/s^2- 10379 rad/sec^2 (Fig 4) Averaged within trials. Peak values for trials range between 9613-13260 rad/s^2 (Table 2)	rad/s (Fig 5) Averaged within trials. Peak values for trials range between 80-106						Mentions injury threshold for concussion in primates. Threshold concusion is exceeded, for DAI not in expts	studies	DAI: [29] Genanarelli et al (1982)	risk based on publishec injury thresholds are	be an y extended version of Jenny et al 2002.

eneral				Model descr	iption				Model input						Kinematic response			Dynamic respon	ıse				Injury crite	rium		Conclusions	Remarks
Authors	Title	Reference	Aim	Type of	Modelled				Type of					of Amplitude of	(peak) linear (peak) lin		(peak)	skull	еуе	brain	veins	neck	type of	source of	references		
				model	entities	Mat. props	s Repr. Age	Repr. Weight	shaking	subjects shaking	to subjects	shaking	shaking	shaking	acceleration veloci	y angular acceleration	angular velocity						criterium	tresholds			
dak, F. A. S	Shaken baby	Forensic Sci Int	t Injury	Mathematic	Skull (weigh	ıt			Mathematic				velocities		4.31 m/s							Neck	treshold for	r previous	[12]	Angular	Computed
		151 (2005) 71-9	9 biomechanics	al	0.68-1.59				al. Single half				assumed in		(Table 2)							distraction	α (30000			accelerations	neck
	piomechanics analysis of		analysis of effects of		kg), neck (length 3.81	-			shake.				Table 2. 50- 150 rad/s									forces calculated to	rad/sec^2)			during shaking are too large to	
	njury		reported		6.35 cm).								and 5000-									range	120 rad/s).			be supported	criticized in
r	mechanisms		angular										15000									between	Tresholds o		[21] Ching et		Margulies at
			velocities and accelerations in										rad/s^2									1027-35931 N (table 3)	strength of infant neck		ai (2001), [9] Duncan	Criteria for SBS need to be	al. Forensic science
			shaking for																				iniant neck			revised.	international
			injury effect on head-neck																						Mayer et al (1999)		164 (2006) 268-269 as
			Head-Heck																						(1999)		being 10
																											times too
																											high
,	•	Proc Inst Mech		Mathematic		Detailed	N/A	N/A	Mathematic				4 Hz	(a) 93.18 mm							Stretch					Sensitivity of	
	model of an nfant brain	Eng H 225 (2011) 1036-49	sensitivity	al. 2D FE model of	cerebrospin I fluid (5-8.6				al.					sin translation							ratrio of bridging					the model outputs to	
	subjected to	(2011) 1030-45	model output	sagital slice		given. (table	2							at							veins ~0.2					parameters	
	periodic motion	ı	(taken to be BV	of head.	thinkness),	1)								brainstem.							for sine					values depends	
	simplified modelling and		stretch) with respect to		single volume									(b) Idem + sine rotation							translation (Fig 4). Ratio					on the shaking conditions.	
	Bayesian		model		brain,									of 30 deg							= 2 for sine					Particularly,	
	sensitivity		parameters		fontanelle									amplitude.							translation +					density ratio,	
а	analysis		(e.g. material properties and		(21-49 mm). See table 1.									Amplitude acceleration							rotation. Both dept o	n				CSF thickness and fontanelle	
			geometry) (CSF											= 3G.							parameter					size have	
			thickness and																		choices.					sensitivity that	
			viscosity and fontanel size,																		Data reported					depends on excitation type	
			Brain E and E*,																		appears to					because they	
			Gi and beta)																		be strain					affect	
																					instead of stretch ratio					buoyance effects, which	
																					given their					are more	
																					explanation in Conclusio					dominant in translational	
																					section (pg					than in	
																					1047)					rotational	
																										excitation.Buoy ance effects	
																										damp brain	
																										motion in	
																										translational excit. Less in	
																										translational	
																										and rotational.	
	Finite element	27th Conference and	Develop d simplified EE	Mathematic al. 2D FE		E, rho, Ey and nu giver		N/A	Mathematic			5 cycles	2-20 Hz	sine acceleration						Stresses are larger near						Fontanelle reduces	
		Exposition on	infant head	model of	(ulameter – 100 mm),	for all			dı.					with						fontanelle						buyoance	
son, J. s		Structural	model for	sagital slice		materials.								amplitude of						(Fig 9). In						effect and	
	requency response	Dynamics (2009) IMAC	shaking. Investigate	of head.	volume brai (diameter=									29.4 m/sec^2.						model without						increases likelyhood of	
	approach	XXVII	influence of		80 mm),	available								11/300 2.						fontanelle						bridging vein	
			fontanelle		cerebrospin															largest						tears. Larger	
					l fluid, fontanelle	with biological lik	(e													stresses at brainstem,						stresses at top of brain might	
					(size = 40	properties"														but very						lead to	
					mm).	(table 2)														small.						damage. Injury	
																										criterium likely different for	
																										fused and	
																										unfused skulls.	
dy, M. E	Development of	f Comput	Model	Mathematic	Head, 7	Scaled from	Nita doll	body 1.9 kg,	Mathematic				~4 Hz (fig 7)	Accelaration		18567-21205	5 39-45 rad/s,						$\Delta max \omega -$	Primate	Ommaya	Results are in	
hof, W.a		Methods	validation.	al. 3D 17	segment	adult.		2- head 0.528 kg						applied to		rad/sec^2,							amax plots		(1985), Dubairea at	line with	
	element/multi- body model of a	Biomech a Biomed Engin		segment RBM / FE	neck, torso, upper and		33 wks gestational		human shaking					torso with max			stiffness parameters						(Fig 8)		Duhaime et al (1987),	previous studies	
		: 17 (2014) 149-		model,	lower limbs.		age		datafrom					amplitude		parameters									Cory and		
f	for restraint	62		based on			newborn		Wolfson et al					~80 m/s^2		(table 3)									Jones (2003)		
				Nita					(see below)					(Fig 7)													
а	analysis and design			newborn																							
а	analysis and design			newborn demonstrati on doll																							

General				Model desc	cription				Model input						Kinematic respon	ise			Dynamic respo	onse				Injury criterium		Conclusions	Remarks	
Authors	Title	Reference	Aim	Type of model			s Repr. Ag	e Repr. Weigh	Type of shaking	Number of subjects shaking	Instruction to subjects		of Frequency of shaking	of Amplitude of shaking	f (peak) linear (pe acceleration v	velocity	(peak) angular acceleration	(peak) angular velocity	skull	eye	brain	veins	neck	type of source o criterium treshold	f reference	S		
Cheng, J. Batterbee, D. Yoxall, A. Sims, N. D. Rowson, J. Howard, I. C	syndrome: A structural dynamics perspective	Conference on Noise and Vibration Engineering	Use numerically modelling to investigate suggested key role of fontanelle in IHI ST	al. 2D FE model of sagittal slice of head and	volume brain, e cerebrospin d I fluid,	in Tables 1 and 2. Value	al	N/A	Mathematic al		•	2 cycles	4 Hz	sin excitatio in lateral direction, max amplitude = 1.2 m/s.							highest stresses in fontanell area ~1 MPa (Fig 5). Displacemen t at top of brain ~ .6 mm (Fig 5)					Qualitative: presence of fontanelle could lead to greater chance of SDH due to shaking.		
	Study of an infant brain subjected to periodic motion via a custom experimental apparatus design and finite element modelling	J Biomech 43 (2010) 2887-96 n		al. 2D FE model of	c Skull, single volume brain, e cerebrospin I fluid, fontanelle.	Table 3. Values		N/A	Mathermatic al, using input from experimental model (Fig 9).				~ 2-3 Hz (Fig 9, 13-14)	3								Displacemen t of markers 2-6 mmm, dept on modelling method (Fig 13, 15).				Special feature of infant skulls, such as fontanelle, are fundamentally important to understand how the head behaves when shaken.	comment on FE	g e of at of tion
Cirovic, S. Bhola, R. M. Hose, D. R. Howard, I. C Lawford, P. V. Parsons, M. A.	eye injury in . infant shaking : An experimental	Med Pathol 1 (2005) 53-9 :	Determine pressure on eye		(eye (diameter = 24 mm, vitreous,	props of fat vitreous, sclera taker from literature al (Power et a 2002),	, 1	N/A	Mathematic al				wave.Chose	al amplitude						max displacemen t is 0.8 mm at centre of eye. (Fig 5). Max stress = ~12 MPa at orbit (Fig 6)						Qualitative: resonance effects may lead to buildup of displacement and stresses during shaking.		
Eucker, S. A. Sullivan, S.		Neurosci 30 (2012) 191-200		al. 3D FE n model of piglet brain. f	brainstem, falx, CSF, Two models for pia- arachnoid complex: spring	Animal test literature.	s piglets	d Brain 33-39.5	g Uses machine based axial, sagital and coronal head rotations from animal experiments (Ibrahim 2010) for model validation							e: 2 8 ra	xpts: e 6.000 - 1	n animal xperiments: 30 - 220 ad/s (pg 94)			modulus for model of brain in situ needed to be adjusted by 1.5-2.25	numerical techniques identified beste predictor for IH and corrsponding threshold value for		Max strain in Numerical spring optimizatio connectors by and % comparing connectors IH under which have various ext this strain conditions during strain (spri simulations. connector Max strain = model) and 31% best stress (soli matches element experimental model) in data. For correspond solid g model element simulation model: 45.4 for differen kPa stress on threshold 10% of outer values surface	on to ng t d tin	Sagittal rotations give most damage in animal expts Best predictor for IH in 3-5 day old piglets is FE model with spring connectors for pia-arachnoid complex . Peak strain for 1% of connectors best predicts IH. Best threshold for IH prediction is 31% strain.		

General				Model descr	iption				Model input						Kinematic respon	ise			Dynamic resp	onse				Injury criterium		Conclusions	Remarks
Authors	Title	Reference	Aim	Type of model	Modelled entities				Type of	Number of subjects	Instruction: to subjects		f Frequency shaking		(peak) linear (pe		(peak) angular	(peak) angular	skull	eye	brain	veins	neck	type of source criterium tresho		s	
				moder	entities	Mat. prop	s Repr. Age	e Repr. Weight	Shaking	shaking	to subjects	Sildking	Shaking	Shaking			acceleration	velocity						criterium tresh	ius		
Ibermani, F.	Infant brain subjected to oscillatory loading: material differentiation, properties, and interface conditions		effects of	al: FE model of 2D axial slice of head of child of 3 months old.	brain, cerebrospina	Table 1 and Fig 2. Data	is	N/A	Mathematic al			2s (8 cycles)	4 Hz	Sine shaped acceleration in anterior- posterior direction, amplitude = 60 m/sec^2.							Displacement ts at corpus callosum ~ 1 2 mm dept on modelling condition. Pressure in CSF. (Figs 11 15)	-				Qualitative: brain-CSF interaction depts on volume subarachnoid space andthickness variations associated with giri. Differating between types of brainmatter changes evulation of brain-CSF interaction.	
• •	Mechanical response of infant brain to manually inflicted shaking	Proc Inst Mech Eng H 224 (2010) 1-15	Numerical modeling of the content of an infant head during shaking to provide improved insight into associated mechanics and resulting head trauma	e . 3D FE model of brain of 3 mounths old child. CSF not as solid but using fludi	Skull, single volume brain, cerebrospina I fluid	explicitely mentioned.	0	N/A	Mathematic al shaking, based on kinematics of surrogate experiments in other papers of Couper and Albermani. Detailed in Fig 4.			0.25 s due t computatio al complexity.			Y: -100 - 50 m/s^2. Z: -30 - 100 m/s^2.(Fig 4)	r	000 - 500 ad /sec^2 Fig 4)	20 - 35 rad/s (Fig 4)			strains in corpus		5	thresholds in cadaver bridging vein studies, stretch > 1.5. animal o Brain tissue strains > 0.1 (axonal injury)	Haut (1989	d Qualitative:). strains in shaking t simulations increase likelihood of focal axonal injury at contact locations and deep brain structures and have a capacity to lead to SDH due to bridging vein rupture.	
• •	Infant brain subjected to oscillatory loading	Australian Journal of Mechanical Engineering 6 (2007) 79-85	Develop 2D FE model of brain with novel method for CFS modeling	a. FE model of 2D axial		Literature values, "in alignement with other researchers		N/A	Mathematic al			2 s (8 cycles) 4 Hz sine wave	Acceleration amplitude = 60 m/sec^2 in sagittal plane							displacemen t at corpus callosum ~ 1 3 mm, dept on subarachnoi d space volume (Fig 2)	-				Qualitative: displacement and strains in brain highly dependent on volume of subarachmnoid space. Higher volume leads to decrease of stress. Also protrusion of giri important	
awab, S. Y. oodhouse, . L.	infant eye	Clin Exp Ophthalmol 24 (2009) 561-71	Develop FE model to asses. f7 forces at retina in shaking and impact motions	s al. FE model of eye, head and neck	single hinge (length = 4cm), single volume brain, detailed eye	Tables 1 an 2. Based on literature references, some of which are other modelling	d	Skull 820 g, brain 500g, based on Duhaime et al.	Mathematic al			1s	4 Hz sine wave	displacemen t about neck pivot with max amplitude of 60 degrees						mean retinal nodal forces are 0.05- 0.08 N during shaking. Peaks up to 0.45 N (Fig 10)				threshold for primate retinal experim adhesive force is 0.14 N for monkey eyes	[49] Kita ar ents Marmor (1992), [50 Kita and Marmor (1992).	d Qualitative: forces on retina are larger during shaking than in impact. And may cause retinal hemorrhaging. Repetitive shaking builds up forces on retina.	

eneral				Model descr	iption				Model input						Kinematic respons	e		Dynamic re	esponse			I	njury criteriu	m		Conclusions	Remarks
Authors	Title	Reference	Aim	Type of	Modelled				Type of		Instructions		Frequency		f (peak) linear (pea		eak) (peak)		eye	brain	veins	neck	type of	source of tresholds	references		
				model	entities	Mat. props	Repr. Age	Repr. Weight	shaking	subjects shaking	to subjects	shaking	shaking	shaking	acceleration v		gular angula leration velocit						criterium	tresnoids			
	Development of			Mathematic		Mechanical	9 mo	Head 2.3kg	Mathematic	•			3 Hz sine	max	95.73 m/s^2	1133	rad/s^2 17.17 rad	/s	_	•			ω – α			Model	Paper
artin, P. S.		Science and the Law 55 (2014)	e quasi-static and rate-dependent	al. 3D RBM	(diameter ~ 6.6 cm),	parameters from			al.				wave	amplitude is 65 mm at	Ranges between 80-								lots (Fig 6). lote : Fig 6		and Jones (2003), [12]	kinematics comparable to	contains a wrong figur
	biomechanical		neck stiffness		multiple	literature								torso in	350 when								wrong and		Duhaime et	doll studies.	6.
o, A. M. bald, P.	infant model		on head linear		hinge neck,									anterior	joint								ontains		al (1987),	Neck stiffness	
	investigation of	F	acceleration and rotational		torso, lims, spine.	Some stiffness and								posterior direction	stiffness is varied								nformation If Fig 5b.		[32] Ommaya	properties are important for	
	infant head		max			damping																			(1985), [33]	peak vertex	
	injury by shaking		acceleration and speed.			parameters determined																			Klinich et al (1996), [34]	acceleration. Accelerations	
						by numerical																			Thibault and	below injury	
						optimization.																			Margulies (1998).	thresholds from literature.	
																										Doubt on	
																										validity of scaling	
																										tresholds from	
																										animal expts.	
rn, T. O.	Head	Journal of	Validate	Mathematic	Skull,		Lambs 5-8	Lambs 7-8.8kg	Torso				~2 Hz (from		100-200		~20 rad/s	;								Head	
		Biomechanics 48 (2015) 3123		al. 2D RBM of lamb.	multiple		days		kinematics measured				Fig 2).		m/s^2 after optimization		after optimizat	ion								kinematics during shaking	
	associated with		body	or famo.	hinge neck, torso.				during						of model		(Fig 4)	1011								can be	
	abusive head trauma		computational model for lamb						shaking lamb						parameters.											reproduced by a RBM and can	
и, Р.	uauna		to reproduce in						experiments						(Fig 4) Text on pg 3125											discribe head-	
h, M. C. erner, A.			vivo lamb shaking												states 200- 250 m/s^2.											torso impacts.	
enier, A.			SHAKINg												250 11/5**2.												
h, M. P. sen, P.																											
F.																											
	The dynamics		-			Partly from	11 wks	N/A	Mathermatic				4Hz		60 degrees						bridging				Lowenhielm		Contains
topher	of shaken baby syndrome	Univeristy of Birmingham	FEM for IHI-ST including CSF.	al. 3D FE model	volume brain,	literature, partly from			al. Angular displacemen						amplitude (Fig 5.7)						veins stretch ratio	5	tretch ratio	and own independent	(1974), Lee and Haut	component of shaking	possible more
	.,	(2002)	Finding BV		cerebrospina	a own data.			t imposed on											brainstem to	between 0.8			experiments	(1989),	responsible for	interesting
			stresses and strains during		l fluid, spine, tentorium.	, See chapter 5			skull.											vertex (Fig 5.20). Max					Meaney (1991)		data. Do not know why it
			shaking			-														value is 800	,-				()	Bridging veins	never is
																				Pa.						tresholds of 1.5 might be too	published as a paper.
																										large for	Looks like
																										children.	solid work.
	Infant eye finite							0 3.46 kg for Q0				200 ms (1	5 Hz		9-12 G when	2358			Pressure: 1.	5-						Retinal	
	element model to investigate			al. FE eye model.	anatomoy (sklera,choro	that o mechanical	dummy		of shaking Q0 dummy			shake period)			shaking Q0- doll (Table 1)	rad/s when			2 kPa at posterior							haemmorrhage s are more	
J. S.	retinal	Biomed Engin	between		id, retina,	properties			(body mass =							shaki	ng doll		pole,							likely due to	
	hemorrhages after fall and		 domestic falling and shaking. 		vitreous, lens,	were taken fro m			3.46 kg, length = 59.7							(Table	e 1)		extending to mid-retina)						rotational accelerations	
	shaking events				zonules,	literature			cm, age = 6																	than to pure	
					ciliary body, aqueaous,	and MRI, no refs given.			months) is used as input																	linear ones. Shaking is more	
					cornea, extra				for the eye																	dangerous than	
					ocular muscles,				model.																	domestic falls for retinal	
					optic nerve,																					hemorrhage.Pr	
					fromt																					essure in eye 4 x and Mises	
					membrane, orbital fat,																					x and Mises strain 14 x	
					orbital wall).																					higher in	
																										shaking than in falls	

General				Model desci	ription				Model input	t					Kinematic re	sponse			Dynamic re	sponse		
Authors	Title	Reference	Aim	Type of	Modelled				Type of	Number of					(peak) linear		r (peak)	(peak)	skull	eye	brain	veins
				model	entities	Mat. props	Repr. Age	Repr. Weight	shaking	subjects shaking	to subjects	s shaking	shaking	shaking	acceleration	velocity	angular acceleration	angular velocity				
Ponce, E.	Modeling neck	IEEE Comput	Predict effect of	f Mathematic	Skull, single	Literature	6-9 mo	N/A					3 Hz sine	200 N							Central brain	
Ponce, D.	and brain			al. 3D FE	volume	values (table 1) from two	(page 92)							transverse force at C4.							regions show	
	injuries in infants	(2011) 90-6	vertebrae C1- C4 and diffuse	model	brain, cerebrospina	-								TOTCE at C4.							largest displacemen	
			alterations in brain		l fluid, spinal cord.	modelling studies															ts (Figs 1-6). Stresses are	
			brain		coru.	studies															more or less	
																					uniformly distributed.	
	Finite element		Create model		Detailed eye			· ·	Mathematic			1 pulse,	5 Hz	50 rad/s						stresses 14-		
N. Kamalakkan	model of ocular injury in	(2009) 364-9	for simulating force and	al. FE eye model.	anatomy (orbit	literature. Details are ir		 drive model based on 	di			based on shaking 2.5		about orbit. Linearly						120 kPa, dept on		
nan, S. B. Hasija, V.	abusive head trauma		deformation effects on eye		[32x32x50m m], fat,	e- supplement	some	shaking 2.5 kg				kg dummy		increasing and						modelling details.		
Shams, T.	trauma		during shaking.		sclera	2,3,4. Sclera		s uummy						descreasing						Largest		
Jenny, C. Serbanescu,					[diam=20m m,	& retina: Young								velocity profile with						stresses at ora serrata,		
I.	,				thickness=1	modulus=3.5	;							peak at 50						which is		
Ho, J. Rusinek, M.					mm], retina [diam=18m									rad/s (suppl 6)						interface between		
Levin, A. V.					m,	viscoelastic (K=0.7 or 7.0														retina and		
					25 mm],	(K=0.7 or 7.0 MPa) or Fluid														vitreous.(Fig 2)		
					vitreous [diam=18m	(VC=0.1-0.5																
					m]). Muscle																	
					modelled as spring/damp																	
					ers	viscoelastic																
						(K=0.7 MPa)																
Raul, J. S.		Int J Legal Med				Literature.	6 mo	N/A	Mathematic			1 cycle of	2.5 Hz	sine velocity								Peak strain
Roth, S. Ludes, B.	benign enlargement of	122 (2008) 337- 40	subarachnoid space on BV	al. 3D FE model	(circumferen ce = 45-55	paper by			al, based on exp data			400 ms	sinewave	pattern with amplitude 30	1							in bridging veins
Willinger, R.			stretching		cm), single	Roth [12]			from Prange	·.				rad/s,								decrease
	subarachnoid space on the		during shaking		volume brain,	(see below)								applied at C5 C6.	1							with increases
	bridging veins				cerebrospina l fluid. Width																	size of subaranoid
	strain during a shaking event:				of																	space.At
	a finite element study				subarachnoi d space is																	vertex peak strain is 0.9
	study				varied																	for 2mm and
					between 2mm																	0.22 for 8 mm. (Fig 2)
					(standard)																	Correspondi
					up to 8 mm (BESS).																	ng stretch ration's are
																						1.9 (2mm)
																						and 1.22 (8mm). In
																						occipital
																						area stretch ratios 1.55
																						(2mm) and 1.34 (8mm)
																						1.34 (011111)

	Injury criteriu	m		Conclusions	Remarks	
neck	type of criterium	source of tresholds	references			
	Von Mises stress > 0.048 N/mm^2 = 50 % chance on injury. Stress > 0.08 N/mm^2 = 100 % chance on injury.		[5] Meyer et al (2010)		FEM appears to be a practical, universal, economical and fast tool with important forensic use.	
	Locations of retinal bleeding from case literature.			Qualitative: area with largest stresses coincides with location where haemorrhages are observed: junction of retina and vitreous posterior pole. There is builden up effect of stress during multiple shakes. First shake gives much lower stress and strain.		
	Weakest point of BV is in subdural and not subarachnoi d	[19]		Increased size of subarachnoid space does not lead to increased risk of subdural bleeding due to increased damping effect of CSF.		

uthors	Title															sponse			Dynamic res					Injury criter			Conclusions	Remarks
	THE	Reference	Aim	Type of					Type of	Number of		ns Duration o			f (peak) linear		(peak)	(peak)	skull	еуе	brain	veins	neck	type of		references		
				model	entities	Mat. prop	ps Repr. Ag	e Repr. Weigh	t shaking	subjects shaking	to subject	s shaking	shaking	shaking	acceleration	velocity	angular acceleration	angular velocity						criterium	tresholds			
, S. Fini	ite element	Int J Legal Med	Compare	Mathematic	Skull, singl	e All literatu	re: 6 mo	N/A	Mathematic			1 cycle of	2.5 Hz	sine velocity							Max Von	Max bridging	ł	bridging	cadaver	[16] Lee,	Bridging vein	Critique on
		121 (2007) 223	- intracerebral	al. 3D FE	volume	some child			al, based on			400 ms	sinewave	pattern with							Mises stress		,	veins stretch	n studies	Haut	stretch in	use of
s, B. imp nger, R. sha	pact and aking	8	dynamic response in	model o	brain, cerebrospi	[9,10], mos ina pig or adul			exp. Data from Prange					amplitude 30 rad/s,	,						is 3.2 kPa at vertex. Max	IS 90 %. Stretch ratio					shaking and impact are in	kinematic parameters
	licted to a		impact and		l fluid,	Table 1.			et al.					applied at C	j.						pressure is						regime to be	to predict
chil	ld		shake using new FEM		bridging									C6.							22 kPa at frontal area						able to cause	brain injury.
			model.		veins, fontanelle																IT UIIL di di ed						rupture. For SDH, model	
																											shows that	
																											shaking can haved same	
																											consequences	
																											as impact, but	
																											brain pressure is less in	
																											shaking.	
son, D. Rigi	id-body	Proc Inst Mech	Investigate	Mathematic	Skull, singl	e	1 yr	N/A. Internet	Mathematic	10 (doll expt	as long an	d max 22 s	max 5.5 Hz	peak toro	30 m/s^2 in		< 1000	~ 20 rad/s					4	$\Delta \omega - \alpha$	primate expt	[15]	impact-type	Paper
	delling of	Eng H 219 (2005) 63-70	effect of neck stiffness on	al. 3D RBM				information	al, using as		hard as possible"	(mean 11.2	(mean 3.5		accompanyin		rad/s^2 (Fig								and previous studies (not	Duhaime et	charaterisics	contains
•	ndrome	(2003) 03-70	head motion	adapted from	head-torso	0		suggests abou 10 kg.	acceleration		(doll expt)	s) (doll expt	expt)	RMS value =	g uon ebxr		4). Pg 65 mentions	(pg 65) mentions 20)						specified in		are required to exceed current	
ord, M. J.			and head-torso		impact exp				data from					3 G. (doll				rad/s +							text, but	and Jones	injury criteria.	impact
berghs,			impacts as injury	CRABI-1year model.	r two-hinge neck.				human shaking					expt)			14000 rad/s^2 due	outlier at 130 rad/s							presumably the		In impacts only lower values	based tresholds as
			mechanism.						experiments								to meeting								references	Margulies	for injury	injury
									on a 6 mo prop doll.								end-stop constraint. In	meeting end-	1-						given in next column)	(1998), [20] Ommaya	threshold were exceeded.	criterium. Suggestion
									prop doil.									constraint. In	n						columny		Research on	there might
																	impact	head-torso								Klinich et al	tissue props	be effect of
																	study: max ~ 10.000	mpact: max ~95 rad/s (fig								(1996).	more important to	cumulative loading.
																	rad/s^2 (fig		0								understand IHI-	
																	5)										ST.	
		J Biomech 47 (2014) 3454-8	Analyse effect of shaking on		Detailed ex anatomy		NA. Pape es is follow-		Mathematic al				2.5 Hz sinewave	30 cm in sagittal	40 m/sec^2 (Fig 3)					normal component							timeintegral of stress is	
iuma, reti		(2014) 3434 0	stress tensors	model.	(orbit	Vanious age	of paper l						Sinewave	plane	(115 5)					stress = 100	0						indicator of	
	morrhages		in retina using FEM .		d=16mm,		Yamazaki													Pa. Shear	_						retina haommorhago	
	companied shaken baby		FEIVI.		fat, sclera, retina,		on mechanic	al												component 3 Pa (Fig 4).							haemmorhage. Timeintegral	
	ndrome/abus				vitreous,		model of													Location of							larger in one	
	head uma				cornea). Ey diameter =		mo child.													max stress is posterior	S						cycle of shaking than in single	
thut	anna				10mm															pole.							impact.	
																											Supports build- up effect.	
																											up effect.	