Online supplementary Table S5. Studies adopting a single-gate design

A. Studies solely adopting a single-gate (reversed flow design): biomarkers reported more than once for the same tumour type and panels

Author (Year)	Cases	Controls	Cut-off point(s)	Sensitivity (% or as reported)	Specificity (% or as reported)	AUC
		vailable for individual biomarker		gle-gate design		
		d in combination (pancreatic canc				
Honda et al (2019) ¹	 156 PaC from EPIC cohort median age at diagnosis 60.9 (37.2-79.6), median age at blood draw 58.1 (34.9-75.7) 53% male Staging NA; 13 localised, 73 metastatic, 69 unknown 	 213 participants in the EPIC cohort not diagnosed with cancer (blood donors, healthy conscious, screening participants, health insurance holders) median age at blood draw 58.0 (34.5-75.4) 53% male (matched) 	 Individual measures, crude values only Cut-off 1: ApoAll- AT/ATQ sensitivity at 95% specificity, 30.3 ng/ml Cut-off 2: ApoAll- AT/ATQ sensitivity at 98% specificity, 27.7 ng/ml 	 Cut off 1: up to 6 months (m) 0.21 (0.07-0.52), >6-18m 0.25 (0.11-0.47), 18m 0.24 (0.12-0.42), >18-36m 0.05 (0.01-0.19), >36-40m 0.07 (0.02-0.18). Cut-off 2: up to 6m 0.14 (0.03-0.47), >6-18m 0.21 (0.08-0.46), 18m 0.19 (0.08- 0.40), >18-36m 0.05 (0.01- 0.20), >36-40m 0.04 (0.01- 0.15). 	NA	• Logistic regression model: 0.62 (0.47-0.77) at lag times ≤6m, 0.65 (0.54- 0.75) >6-18m, 0.53 (0.43- 0.62) >18m and 0.52 (0.44-0.60) > 36m
	• Measures according to months prior to diagnosis (lag times): up to six months, >6-18, 18, >18-36 and >36-40 months		Combination with CA19-9, crude values only • CA19-9: 37 U/ml and 38 U/ml	 CA19-9 (37 U/ml) and ApoAll-ATQ/AT (27.7 ng/ml): up to 6m 0.57 (0.29-0.82), >6-18m 0.39 (0.22-0.59), 18m 0.45 (0.30-0.61), >18- 36m 0.09 (0.03-0.22), >36- 40m 0.07 (0.02-0.16). CA19-9 (38 U/ml) and ApoAll-ATQ/AT (25 ng/ml): up to 6m 0.57 (0.29-0.82), >6-18m 0.36 (0.19-0.56), 18m 0.43 (0. 28-0.59), >18- 36m 0.07 (0.01-0.19), >36- 40m 0.07 (0.02-0.16). 	 CA19-9 (37 U/ml) and ApoA2-ATQ/AT (27.7 ng/ml): up to 6m 0.96 (0.92-0.98), >6-18m 0.96 (0.92-0.98), >18-36m 0.96 (0.92-0.98), >18-36m 0.96 (0.92-0.98), >36-40m 0.96 (0.92-0.98). CA19-9 (38 U/ml) and ApoA2-ATQ/AT (25 ng/ml): up to 6m 0.98 (0.95-0.99), >6-18m 0.98 (0.95-0.99), >18m 0.98 (0.95-0.99), >18- 36m 0.98 (0.95-0.99), >18- 36m 0.98 (0.95-0.99), >36- 40m 0.98 (0.95-0.99). 	• Combined CA19-9 and ApoA2-ATQ/AT in logistic regression model 0.78 (0.66-0.91) at lag times ≤6m, 0.74 (0.64-0.84) .6- 18m, 0.63 (0.54-0.72) >18m months and 0.56 (0.48-0.64) >36m
Honda et al (2015) ²	Cohort 1 • 131 IDACP • Mean age 68.8 (SD 9.01) • 55% male • Staging: most at advanced stages	Cohort 1 • 131 HC • Mean age 62.5 (SD 10.8) • 52% male	 Results provided for both ELISA and mass spectrometric analysis ELISA: apoAII-ATQ/AT 46.3µg/ml and CA19–9 75 units/ml 	NA	NA	ApoAll-ATQ/AT (0.935 for ELISA, 0.885 for MS analysis). ApoAll-ATQ (0.427 for Elisa) and ApoAll-AT (0.856 for Elisa)
	Cohort 2 • 155 IDACP • Age and sex NA • Staging: most advanced	Cohort 2 • 57 pancreatic disease other than IDACP (2) • Age and sex NA		ApoAll-ATQ/AT + CA19-9 95.4%	ApoAll-ATQ/AT + CA19-9 98.3%	ApoAll-ATQ/AT alone (0.944), IDACP patients vs HC.

Author (Year)	Cases	Controls	Cut-off point(s)	Sensitivity (% or as reported)	Specificity (% or as reported)	AUC
						 ApoAII-ATQ/AT alone for stage IV vs healthy controls (0.946)
	Cohort 3 • 98 PaC • Age and sex NA • Staging: all early stages	Cohort 3 • 62 CP, 31 acute benign biliary obstruction, 61 HC • Age and sex NA		NA	NA	• Linear combination of log- transformed CA19–9 and apoAII-ATQ/AT, 0.879 (0.823–0.930).
Honda et al (2012) ^{3a}	Cohort 1 • 103 PDAC • mean age 61.5 • 53% male • Does not meet criteria as used to calculate first measures of performance	Cohort 1 • 112 HC • mean age 61.3 (SD 13.0) • 50% male • Does not meet criteria as used to calculate first measures of performance	• NA	Does not meet criteria	Does not meet criteria	Does not meet criteria
	Cohort 2 • 62 PaC • mean age 63.3 (8.34) • 61% male • Staging NA	Cohort 2 • 41 HC (does not meet criteria) • mean 61.5 (11.2) • 56% male	• NA	Does not meet criteria	Does not meet criteria	Does not meet criteria as less than 50 controls
	Cohort 3 • 52 PaC • Mean age 63.1 (9.85) • 56% male • Staging NA	Cohort 3 • 53 HC and 58 CP • HC mean 39.1 (15.6), CP 50.3 (8.9) • HC 59% male, CP 74% male	• NA	• N/A	• N/A	 Cohort 3, cancer vs healthy 0.958 (0.920- 0.996) (ApoAII-2)
	Cohort 4 • 249 PDAC and 18 other malignant tumour of the pancreas • PDAC mean age 64.4 (9.11), other 68.3 (9.74) • PDAC 59% male, other 67% male • Staging NA	 Cohort 4 128 HC, 38 benign tumour or cyst and 14 CP HC mean 46.6 (16.8), benign tumour or cyst 63.5 (11.0), CP 60.2 (10.2) HC 65% male, benign tumour or cyst 45% male, CP 86% male 	• NA	 93.39% (ApoAII-2+CIII-0 and CA19-9) – all tumour stages 94.20% (ApoAII-2+CIII-0 and CA19-9) – stage III only 91.60% (ApoAII-2+CIII-0 and CA19-9) – stage IV only 	 93.22% (ApoAII-2+CIII-0 and CA19-9) – all tumour stages 93.22% (ApoAII-2+CIII-0 and CA19-9) – stage III only 93.22% (ApoAII-2+CIII-0 and CA19-9) – stage IV only 	Cohort 4: only available combining ApoAII-2 with ApoCIII-0 (not shown)
Pepsinogen	(PGI/PGII) (gastric cancer)					
Gantuya et al (2019) ⁴	 prevalence) No information on age and sex Staging NA 	 752 non-cancer patients (302 antrum limited CG and/or atrophy and 450 corpus CG and/or atrophy (77% H. pylori prevalence) Mean age: 53.8 (SD 1, 27- 78) 31% male 	PG I/II<2.2 and PGI <28ng/mL were the best cut-off points	• PGI: 70% • PG I/II: 66%	• PGI: 70% • PG I/II: 65.1%	 PGI: 0.76 (0.68-0.84) PGI/II: 0.70 (0.62-0.77)
Kang et al (2008) ⁵	 380 GC (intestinal and diffuse type) 	• 172 BGU, 119 DU, 107 dysplasia	 PG I ≤ 70 ng/mL PG I/II ratio ≤ 3.0 	• PG I: intestinal type 77.7%, diffuse type 64.7%.	• PG I: intestinal type 20.2%, diffuse type 20.2%.	NA

Author (Year)	Cases	Controls	Cut-off point(s)	Sensitivity (% or as reported)	Specificity (% or as reported)	AUC
	 Age and sex not available for cases separately No information on staging 	Age and sex not available for controls separately		• PG I/II: intestinal type 62.3%, diffuse type 55.8%	PG I/II: intestinal type 61.0%, diffuse type 61.0%	
Kikuchi et al (2011) ⁶	 122 GC Age: 68.2 years (41-87, SD 9.7) 74% male Staging NA 	 16 GU or DU, 17 superficial gastritis, 66 CAG, 79 no abnormality Age: 56.2 years (22-82, SD 14.9) 55% male 	 Conventional PG: PG I ≤ 70 ng/ml and PG I/II ratio ≤ 3. Strict PG: PG I ≤ 30 ng/ml and PG I/II ratio ≤ 2 	Conventional PG: 77.9%, strict PG:41.3%, Normal and non-malignant conditions combined	Conventional PG: 61.8%, strict PG:90.4% Normal and non-malignant conditions combined	NA
Yanaoka et al (2008) ^{7b}	 Age: 50.3-51.8 (mean range) 100% male 86% early, 14% late stages 	 5146 HC Mean age: 49.2 ± 4.7 100% male 	 ≤70 ng/mL and PG I/II ratio of ≤3.0 (1), ≤50 ng/mL and PG I/II ratio of ≤3.0 (2), ≤30 ng/mL and PG I/II ratio of ≤2.0 (3) 	 Cut-off 1: 58.7% (45.6-70.8%). Cut-off 2: 49.2% (36.5-62.0%) Cut-off 3: ≤2.0: 27.0% (16.9-39.9%). 	 Cut-off 1: 73.4% (72.1-74.6%). Cut-off 2: 80.5% (79.4-81.6%) Cut-off 3: ≤2.0: 92.0% (91.3-92.8%). 	NA
		vailable for established biomark	ers combined with novel bio	omarkers not shown above, in st	tudies adopting a single-gate of	lesign
O'Brien et al (2015) ⁸	 IOT PaC Age NA for validation cohort 100% female Staging NA 	 184 HC Age not available for validation cohort 100% female 	 CA19-9 >25 U/mL; >30 U/ml; >37 U/mL and >40 U/mL – in combination with CA125 >20 U/mL; >25 U/mL; >30 U/mL Measures reported according to time to diagnosis: 0-4 years, 0- 2 years; 1-4 years Measures reported for restricted set (removing serial samples) 	 0-4: CA19-9 (>25) or CA125 (>20) 50.0%; CA19-9 (>30) or CA125 (>25) 39.9%; CA19-9 (>37) or CA125 (>30) 30.4%; CA19-9 (>40) or CA125 (>25) 31.9%. 0-2: CA19-9 (>25) or CA125 (>20) 53.1%; CA19-9 (>30) or CA125 (>25) 46.9%; CA19-9 (>37) or CA125 (>30) 40.6%; CA19-9 (>40) or CA125 (>25) 37.5%. 1-4: CA19-9 (cut-off>25) or CA125 (>20) 45.4%; CA19-9 (>30) or CA125 (>25) 34.3%; CA19-9 (>37) or CA125 (>30) 23.1%; CA19-9 (>40) or CA125 (>25) 25.9%. 	 0-4: CA19-9 (>25) or CA125 (>20) 73.8%; CA19-9 (>30) or CA125 (>25) 89.1%; CA19-9 (>37) or CA125 (>30) 91.3%; CA19-9 (>40) or CA125 (>25) 91.3%. 0-2: CA19-9 (>25) or CA125 (>20) 71.6%; CA19-9 (>30) or CA125 (>25) 89.5%; CA19-9 (>37) or CA125 (>30) 90.5%; CA19-9 (>40) or CA125 (>25) 92.6% 1-4: CA19-9 (>25) or CA125 (>20) 73.8%; CA19-9 (>30) or CA125 (>25) 92.6% 1-4: CA19-9 (>25) or CA125 (>20) 73.8%; CA19-9 (>30) or CA125 (>25) 89.2%; CA19-9 (>37) or CA125 (>30) 91.5%; CA19-9 (>40) or CA125 (>25) 90.8%. 	NA for validation set
Tavano et al (2018) ⁹	 74 PaC Median age 69 (61-76) 54% male Staging NA for validation cohort (majority late stages overall) 	 117 HC Median age 62 (55-70) 45% male 	 CA 19-9 36 U/mL – in combination with miR- 1290 (610 number of copies/ul) 	Combined: 83.8%	• Combined: 96.6%	• Combined: 0.923 (0.876- 0.969)

Author (Year)	Cases	Controls	Cut-off point(s)	Sensitivity (% or as reported)	Specificity (% or as reported)	AUC
Zhou et al (2014) ¹⁰	 152 PaC Mean age 56 (SD 13.5) 67% male Staging: 5 IA, 12 IB, 36 IIA, 20 IIB, 40 III, 39 IV 	 96 HC, 91 CP, 20 pre- malignancies Mean age: HC 58 (7.6), CP 58 (15.0), pre-malignancies 60 (11.3) HC 75% male; CP 57% male; pre-malignancy 75% male 	 CA19-9 in combination with ULBP2 and MIC Optimum cut-offs (determined by ROC analysis): CA19-9 18.44 U/ml, ULBP2 94.08 pg/ml and MIC-1 642.83 pg/ml 	NA for combination	NA for combination	 PaC vs CP (PaC vs HC not available in combination): MIC-1 + ULBP2 + CA 19-9): 0.982; MIC-1 + CA 19-9: 0.932; ULBP-1 + CA 19-9: 0.953
		vailable for a panel only in studi	es adopting a single-gate de	sign		
	els (pancreatic cancer) ^c					
Balasenthil et al (2017) ¹¹	 98 PaC (52 with no diabetes or pancreatitis) Age and sex not available Staging: 7 IA, 8 IB, 1 II, 40 IIA and 42 IIB 	 62 chronic pancreatitis, 31 acute biliary obstruction, 61 healthy (50 with no diabetes or pancreatitis) Age and sex not available 	 Optimal cut-offs defined by logistic regression, for the panel (TFPI+TNC- FN III-C+CA19-9) Risk score (RS) determined using a formula Optimal cut-off: 5.79. Panel with CA19-9 alone optimal cut-off 1.12 	 cancer (all stages) vs healthy controls: 0.75 (0.65- 0.83) cancer (stage I-II only) vs healthy controls: 0.73 (0.6- 0.84) cancer (all stages) vs chronic pancreatitis: 0.75 (0.65-0.83) cancer (stage I-II only) vs chronic pancreatitis: 0.73 (0.62-0.84) cancer (all stages) with no diabetes or pancreatitis vs healthy with no diabetes or pancreatitis: 0.81 (0.69-0.90) 	 cancer (all stages) vs healthy controls: 0.82 (0.71-0.90) cancer (stage I-II only) vs healthy controls: 0.82 (0.72-0.90) cancer (all stages) vs chronic pancreatitis: 0.71 (0.60-0.82) cancer (stage I-II only) vs chronic pancreatitis: 0.71 (0.60-0.81) cancer with no diabetes or pancreatitis vs healthy with no diabetes or pancreatitis: 0.84 (0.72-0.94) 	 cancer (all stages) vs healthy controls: 0.83 (0.76-0.89) cancer (stage I-II only) vs healthy controls: 0.79 (0.70-0.87) cancer (all stages) vs chronic pancreatitis: 0.78 (0.71-0.85) cancer (stage I-II only) vs chronic pancreatitis: 0.75 (0.65-0.84) cancer with no diabetes or pancreatitis vs healthy with no diabetes or pancreatitis: 0.89 (0.82-0.95)
Mellby et al (2018) ¹²	 2 cohorts; only one for validation (US cohort) 143 PaC Median age only by staging; range (overall) 24-87 57% male Staging: 15 I, 75 II, 15 III and 38 IV 	 219 HC, 57 CP HC median age 63.0 (24- 86), CP 55.5 (32-81) HC 53% male, CP 46% male 	• 29 panel signature without any established biomarkers used in combination (CA19-9 was analysed but not retained)	Panel only: 95% for stages I and II	Panel only: 93% for stages I and II	• Panel only: PaC stages I and II vs HC: 0.963 (0.94 - 0.98), on the basis of the three training sets; Chronic Pancreatitis vs patients with PaC stage I and II: 0.84

^aOutcomes available by staging, but as N by staging was not available eligibility was uncertain and data were not extracted. ^bPPVs were also provided: Cut-off 1: 2.6% (1.9-3.6%); Cut-off 2: 3.0% (2.1-4.3%); cut-off 3: 4.0% (2.4-6.4%). Abbreviations: ACG: atrophic chronic gastritis; ApoAII-AT/ATQ: apolipoprotein AII-AT/ATQ; BGU: benign gastric ulcer; DU: duodenal ulcer; CG: Chronic gastritis; CP: chronic pancreatitis; EPIC: European Prospective Investigation into Cancer and Nutrition; GC: gastric cancer; GU: gastric ulcer; IDACP: invasive ductal adenocarcinoma of pancreas; MIC: macrophage-inhibitory cytokine 1; MPV: mean platelet volume; NA: not available; PaC: pancreatic cancer; PDAC: pancreatic ductal adenocarcinoma; PDW: platelet distribution width; PGI/II: serum pepsinogen I/II; TFPI: plasma tissue factor pathway inhibitor; NTC-FN III-C: tenascin-C; ULBP2: UL16 binding protein 2. ^cLeelawat et al 2010 also adopted a reversed-flow design but was not added as it was the only study investigating CA19-9 for cholangiocarcinoma.

B. Studies adopting a hybrid design with a reversed-flow design (either confirmed or likely) for at least one control, with measures: biomarkers reported more than once

Author (Year)	Cases	Controls	Cut-off point(s)	Sensitivity (% or as reported)	Specificity (%)	AUC
CA19-9 (pan	creatic cancer)					
Duraker et al (2007)	 123 PaC (with and without obstructive jaundice) Age and sex not available Staging NA; 17 resectable, 106 unresectable 	 58 benign pancreatic diseases (with and without obstructive jaundice) Age and sex not available 	 CA19-9 37 U/ml and 29 U/ml (two different kits), combined with CEA: 5 ng/ml CA 125: 35 U/ml and 26/ml (two different kits) 	• CEA or CA 19-9 86.2; CEA or CA125 64.2; CA 19-9 or CA125 91.9; CEA + CA 19-9 34.1; CEA + CA125 30.9; CA 19-9 + CA125 46.3; CEA + CA 19-9 + CA 125 26.8	• CEA or CA 19-9 72.4; CEA or CA125 70.7; CA 19-9 or CA125 60.3 ; CEA + CA 19-9 94.8; CEA + CA125 98.3; CA 19-9 + CA125 93.1 ; CEA + CA 19-9 + CA 125 98.3	• NA
Firpo et al (2009) ¹³	 75 PaC Median age 69 (range 48- 92) 61% male Staging: 1 IA, 3 IB, 7 IIA, 24 IIB, 17 III, 23 IV 	 150 HC, 32 CP, 42 benign neoplasm and periampullary lesions, and other benign periampullary lesions HC median age 66 (30-94), CP 50 (32-77), benign neoplasm and periampullary lesions 70.5 (41-91). NA other HC 61% male, CP 53% male, benign neoplasm and periampullary lesions 48% male, NA other 	• CA19-9: 54.54 U/ml - in combination with haptoglobin 2821.5 ng/ml and SAA 68.445 ng/ml (derived from classification three algorithm that did not include healthy controls)	Panel only: PaC vs benign neoplasms 81.3%; PaC vs CP 81.3%; PaC vs healthy controls 81.3%; PaC vs combined controls 81.3%	Panel only: PaC vs benign neoplasms 88.1%; PaC vs CP 90.6%; PaC vs healthy controls 98.7%; PaC vs combined controls 95.5%	NA for combination
Liu et al (2012) ¹⁴	 138 PaC patients Mean age 61.8 (SD 10.6) 64% male Staging: 27 I; 39 II; 17 III and 55 IV 	 107 CP, 68 HC CP mean age 48.6 (14.0), HC 60.5 (11.3) CP 66% male, HC 66% male 	 Combination of CA19-9 (cut-off >37 U/mL) with miR-16 and miR-196a using logistic regression Formula to calculate miRNAs relative abundance - cel-miR-39 as the internal standard 	 Combinations only (miRNA panel and CA19-9): PCa vs normal: 92.0% (87.5–96.5). PCa vs CP: 87.7% (82.2–93.2) PCa vs CP and normal: 87.7% (82.2–93.2) 	 Combinations only (miRNA panel and CA19-9): PCa vs normal: 95.6% (90.7–100.0) PCa vs CP: 96.3% (92.7–99.9) PCa vs CP and normal: 97.7% (95.5–99.9) 	 Combinations only (miRNA panel and CA19-9): PCa vs normal: 0.979, p < 0.000). PCa vs CP: 0.956, p < 0.000). PCa vs CP and normal: 0.952, p < 0.000).
Rychilikova et al (2016) ¹⁵	 64 PaC patients Age not available 58% male Staging: 10 II, 24 III and 29 IV 	 71 CP, 66 T2DM, 48 HC (37 CP also had DM) Age and sex not available 	 CA 19-9 (cut-off 29 kUI/L) - combined with osteopontin (cut-off 102 ng/ml) Combination: cut-off value of 3.77 	Combination for PaC vs CP: 83%	Combination for PaC vs CP: 89%	• Combination for PaC vs CP: 0.88 ± 0.03
CEA (gastric						
Li et al (2018) ¹⁶	 Model building (met eligibility) 176 GC Age and sex not available Staging: 63 early stage and 113 advanced stage) 	 Model building (met eligibility) 117 atypical hyperplasia, 204 HC. Age and sex not available. 	• CEA (cut-off 3.45) - in combination with CA724 (cut-off 5.80), IL-6 (cut-off 20.31), IL-8 (cut-off 1.45) and TNF- α (cut-off 7.82)	NA	NA	• GC vs HC 0.95 (0.93- 0.97). Early-stage GC vs HC: 0.95 (0.92- 0.98). Advanced-stage GC vs HC: 0.95 (0.92- 0.97),

Author (Year)	Cases	Controls	Cut-off point(s)	Sensitivity (% or as reported)	Specificity (%)	AUC
			Combinations used binary logistic regression			 GC vs atypical hyperplasia did not include CEA in panel.
	 Further validation (independent study) 58 GC Age and sex not available Staging: 19 early and 39 advanced 	 Further validation (independent study) 41 atypical hyperplasia, 66 HC. Age and sex not available 	-	 GC vs healthy controls 89.66%. Early-stage GC vs HC: 84.21%. Advanced- stage GC vs HC: 92.31% GC vs atypical hyperplasia did not include CEA in panel 	 GC vs healthy controls 92.42%. Early-stage GC vs HC: 90.91%. Advanced- stage GC vs HC: 90.91% GC vs atypical hyperplasia did not have CEA in panel 	NA
Yun et al (2017) ^{17a}	 194 GC Mean age 54.7 (SD 9.7), range 28-77 61% male Staging: 99 I/II, 95 III/IV 	 185 HC, 191 GU HC mean age 54.7 (9.7), range 50-72. GU mean age 54.9 (5.2), range 35-71 HC 56% male, GU 58% male 	CEA in combination with MPV, PDW, CEA. Cut- off values NA	• GC vs HC: CEA+MPV 0.820; CEA+PDW 0.835. GC vs GU: CEA+MPV 0.851; CEA+PDW 0.990	• GC vs HC: CEA+MPV 0.838; CEA+PDW 0.908. GC vs GU: CEA+MPV 0.770; CEA+PDW 0.979	 GC vs HC: CEA+MPV 0.889 (0.854-0.919); CEA+PDW 0.939 (0.910- 0.961). GC vs GU: CEA+MPV 0.876 (0.839- 0.907); CEA+PDW 0.996 (0.984-1.000)

^aBoth PPVs and NPVs were also provided: PPVs: GC vs HC: CEA+MPV 0.841; CEA+PDW 0.905. GC vs GU: CEA+MPV 0.789; CEA+PDW 0.980. NPVs: NPV: GC vs HC: CEA+MPV 0.816; CEA+PDW 0.840. GC vs GU: CEA+MPV 0.835; CEA+PDW 0.989. Abbreviations: CP: chronic pancreatitis; GC: gastric cancer; GU: gastric ulcer; MPV: mean platelet volume; NA: not available. PaC: pancreatic cancer; PDW: platelet distribution width; SAA: serum amyloid A.

References:

1. Honda K, Katzke VA, Husing A, et al. CA19-9 and apolipoprotein-A2 isoforms as detection markers for pancreatic cancer: a prospective evaluation. Int J Cancer. 2019;144(8):1877-87.

2. Honda K, Kobayashi M, Okusaka T, et al. Plasma biomarker for detection of early stage pancreatic cancer and risk factors for pancreatic malignancy using antibodies for apolipoprotein-All isoforms. Sci Rep. 2015;5:15921.

3. Honda K, Okusaka T, Felix K, et al. Altered Plasma Apolipoprotein Modifications in Patients with Pancreatic Cancer: Protein Characterization and Multi-Institutional Validation. PLoS One. 2012;7 (10) (no pagination)(e46908).

4. Gantuya B, Oyuntsetseg K, Bolor D, et al. Evaluation of serum markers for gastric cancer and its precursor diseases among high incidence and mortality rate of gastric cancer area. Gastric Cancer. 2019;22(1):104-12.

5. Kang JM, Kim N, Yoo JY, et al. The role of serum pepsinogen and gastrin test for the detection of gastric cancer in Korea. Helicobacter. 2008;13(2):146-56.

6. Kikuchi R, Abe Y, lijima K, et al. Low serum levels of pepsinogen and gastrin 17 are predictive of extensive gastric atrophy with high-risk of early gastric cancer. Tohoku J Exp Med. 2011;223(1):35-44.

7. Yanaoka K, Oka M, Mukoubayashi C, et al. Cancer high-risk subjects identified by serum pepsinogen tests: outcomes after 10-year follow-up in asymptomatic middle-aged males. Cancer Epidemiol Biomarkers Prev. 2008;17(4):838-45.

8. O'Brien DP, Sandanayake NS, Jenkinson C, et al. Serum CA19-9 is significantly upregulated up to 2 years before diagnosis with pancreatic cancer: implications for early disease detection. Clin Cancer Res. 2015;21(3):622-31.

9. Tavano F, Gioffreda D, Valvano MR, et al. Droplet digital PCR quantification of miR-1290 as a circulating biomarker for pancreatic cancer. Sci Rep. 2018;8(1):16389.

10. Zhou YF, Xu LX, Huang LY, et al. Combined detection of serum UL16-binding protein 2 and macrophage inhibitory cytokine-1 improves early diagnosis and prognostic prediction of pancreatic cancer. Oncol Lett. 2014;8(5):2096-102.

11. Balasenthil S, Huang Y, Liu S, et al. A Plasma Biomarker Panel to Identify Surgically Resectable Early-Stage Pancreatic Cancer. J Natl Cancer Inst. 2017;109(8):01.

12. Mellby LD, Nyberg AP, Johansen JS, et al. Serum Biomarker Signature-Based Liquid Biopsy for Diagnosis of Early-Stage Pancreatic Cancer. J Clin Oncol. 2018;36(28):2887-94.

13. Firpo MA, Gay DZ, Granger SR, et al. Improved diagnosis of pancreatic adenocarcinoma using haptoglobin and serum amyloid A in a panel screen. World J Surg. 2009;33(4):716-22.

14. Liu J, Gao J, Du Y, et al. Combination of plasma microRNAs with serum CA19-9 for early detection of pancreatic cancer. Int J Cancer. 2012;131(3):683-91.

15. Rychlíková J, Vecka M, Jáchymová M, et al. Osteopontin as a discriminating marker for pancreatic cancer and chronic pancreatitis. Cancer Biomark. 2016;17(1):55-65.

16. Li J, Xu L, Run ZC, et al. Multiple cytokine profiling in serum for early detection of gastric cancer. World J Gastroenterol. 2018;24(21):2269-78.

17. Yun ZY, Li N, Zhang X, et al. Mean platelet volume, platelet distribution width and carcinoembryonic antigen to discriminate gastric cancer from gastric ulcer. Oncotarget. 2017;8(37):62600-5.