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1 Model Description

Following Moghadas et al. (2020), we specify an age-stratified compartmental model of the COVID-19 pandemic
in which we track the number of susceptible (Sat ), exposed (Eat ), mildly symptomatic (Ai,at ), severely symptomatic

(Ii,h,at ), hospitalized (Hc,v,a
t ), deceased (Da

t ), and recovered (Rat ) individuals in age group a at time t, where i ∈
{0, 1} indicates whether individuals are self-isolated, h ∈ {0, 1} indicates whether individuals require hospitalization,
c ∈ {0, 1} indicates whether hospital patients get admitted to the intensive-care unit (ICU), and v ∈ {0, 1} indicates
whether hospital patients require mechanical ventilation. We assumed that mechanical ventilation is only present
in the ICU, so that H0,1,a

t does not exist.
Furthermore, we incorporate additional states that represent the number of patients that are infected but

asymptomatic, Ãi,at , and the number of patients under testing (from the time the patient goes to get tested to

the time the test result is made available), T s,h,at , where s ∈ {0, 1, 2} is an indicator of whether the patient is
asymptomatic (0), mildly symptomatic (1) or severely symptomatic (2) and h ∈ {0, 1} again indicates whether
patients require hospitalization. We assumed that asymptomatic and mildly symptomatic patients will not require
hospitalization (so that T 0,1,a

t and T 1,1,a
t do not exist). After adding these additional states, the original Eat represent

exposed patients who will become infectious, while the original infectious states (Ãi,at , Ai,at , Ii,h,at ) represent infected
patients who are not under testing. The model structure is pictured in Figure S1.

We also included additional dynamic model states to represent changes in the effective transmission rate over
time (e.g. due to social distancing), ξt, and changes in the proportion of mild and severe patients getting tested
over time (wAt and wIt for mild and severe, respectively).

Mathematically, Sat , Eat , Ãi,at , Ai,at , Ii,h,at , T s,h,at , Hc,v,a
t , Da

t , Rat , and ξt are all nonnegative for all t, while wAt
and wIt are between 0 and 1 for all t. When monitoring the pandemic, the true Sat , Eat , Ãi,at , Ai,at , Ii,h,at , T s,h,at ,
Hc,v,a
t , Da

t , and Rat , ξt, w
A
t , and wIt are unknown and regarded as hidden states of the model.

The model is also governed by fixed parameters related to disease transmission, behavior and symptoms, testing,
and hospitalization. These are described in Table S1.

Lastly, the unknown states and fixed parameters were assumed to be related to observed data from The COVID
Tracking Project (covidtracking.com). The data include the reported number of positive tests (pt), patients cur-
rently hospitalized (ht), patients in the ICU (it), patients on mechanical ventilation (vt), and cumulative deaths
(dt) at time t. Given the states, fixed parameters, and observed data defined above, we construct a state-space
model of the COVID-19 pandemic in the US, in which an observation equation specifies how the observed data
depend on the hidden state of the pandemic and the state equation describes how the pandemic evolves over time.
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Figure S1: Compartmental model structure.

1.1 State equation

First, we describe the state equation. Let

xat = (Sat , E
a
t ,

Ã0,a
t , Ã1,a

t , A0,a
t , A1,a

t ,

I0,0,at , I1,0,at , I0,1,at , I1,1,at ,

T 0,0,a
t , T 1,0,a

t , T 2,0,a
t , T 2,1,a

t ,

H0,0,a
t , H1,0,a

t , H1,1,a
t ,

Da
t , R

a
t ,

ξt, w
A
t , w

I
t )′

be the state of the pandemic for age group a at time t, and let xt = (x1t
′
, x2t
′
, . . . , xλt

′
)′, where λ is the number of

age groups.
For the testing turnaround rate (i.e. inverse of the test system delay) and testing sensitivity parameters ϕ and

ω, we assumed these represent the weighted average of L available tests on the market, such that

ϕ =

L∑
j=1

sjϕj ω =

L∑
j=1

sjωj

where ϕj , ωj , and sj ∈ [0, 1] represent the turnaround rate, sensitivity, and market share, respectively, of test j,
with s1 + s2 + · · · sL = 1.

Let the likelihood of coming in contact with an infectious individual in the community (Cat ) versus while in
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Parameter Description
Transmission parameters
Pa ≥ 0 population size for age group a
β ≥ 0 transmission rate per contact

Ma,c ≥ 0 community contact rate per day between people in age groups a and c

M̃a,c ≥ 0 household (isolation) contact rate per day between people in age groups a and c
κM ∈ [0, 1] relative infectivity of mild versus severe illness
κA ∈ [0, 1] relative infectivity of asymptomatic versus severe illness
ν ≥ 0 symptom onset rate per day among infected (inverse of the incubation period)

Symptoms and behavioral parameters
ζa ∈ [0, 1] proportion of infected individuals in age group a that are asymptomatic
θa ∈ [0, 1] proportion of cases in age group a exhibiting mild symptoms
γ ≥ 0 recovery rate per day from symptom onset
q ∈ [0, 1] proportion of severe cases who practice self-isolation upon symptom onset
fI ∈ [0, 1] weight associated with self-isolation after symptom onset for severe cases
fA ∈ [0, 1] weight associated with self-isolation after symptom onset for mild cases
fT ∈ [0, 1] proportion of cases that self-isolate while waiting for test results
τI ≥ 0 self-isolation rate per day for severe cases after symptom onset
τA ≥ 0 self-isolation rate per day for mild cases after symptom onset

φξ ∈ (0, 1) autocorrelation parameter for the change in transmission rate over time
σξ ≥ 0 white noise standard deviation of the change in transmission rate over time

Testing parameters
ws ∈ [0, 1] proportion of asymptomatic cases that get tested
rI ≥ 0 rate per day of testing for severe cases
rA ≥ 0 rate per day of testing for asymptomatic and mild cases
ϕ ≥ 0 daily turnaround rate of testing
ω ≥ 0 sensitivity of testing

φI ∈ (0, 1) autocorrelation parameter for the change in testing of severe cases over time
φA ∈ (0, 1) autocorrelation parameter for the change in testing of mild cases over time
σw ≥ 0 white noise standard deviation of the change in testing of severe and mild cases over time
α ≥ 0 upper limit of overall daily testing capacity

pα ∈ [0, 1] proportion of testing capacity applied to the infected population
Hospitalization parameters
δ ≥ 0 hospitalization rate per day

ρa ∈ [0, 1] proportion of severe cases in age group a requiring hospitalization
ca ∈ [0, 1] proportion of hospitalized cases in age group a admitted to the ICU
v ∈ [0, 1] proportion of patients admitted to the ICU that require mechanical ventilation
µh ≥ 0 rate per day of death for hospitalized patients not admitted to the ICU
µc ≥ 0 rate per day of death for patients admitted to the ICU but not on mechanical ventilation
µv ≥ 0 rate per day of death for patients on mechanical ventilation

mh ∈ [0, 1] weight associated with death for hospitalized patients not admitted to the ICU
mc ∈ [0, 1] weight associated with death for ICU patients not on mechanical ventilation
mv ∈ [0, 1] weight associated with death for patients on mechanical ventilation
ψh ≥ 0 rate per day of recovery for hospitalized patients not admitted to the ICU
ψc ≥ 0 rate per day of recovery for patients admitted to the ICU but not on mechanical ventilation
ψv ≥ 0 rate per day of recovery for patients on mechanical ventilation

Table S1: Definitions of fixed parameters.

isolation (Oat ) be defined by the following:

Cat =
I0,0,at + I0,1,at + κMA

0,a
t + κAÃ

0,a
t + (1− fT )

(
T 2,0,a
t + T 2,1,a

t + κMT
1,0,a
t + κAT

0,0,a
t

)
Pj

Oat =
I1,0,at + I1,1,at + κMA

1,a
t + κAÃ

1,a
t + fT

(
T 2,0,a
t + T 2,1,a

t + κMT
1,0,a
t + κAT

0,0,a
t

)
Pa
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Let Tt =
∑λ
j=1

(
T 0,0,j
t + T 1,0,j

t + T 2,0,j
t + T 2,1,j

t

)
be the total number of infected individuals under testing at time

t and define

T̃ 0,0,a
t = min

(
T 0,0,a
t , pαα(T 0,0,a

t / Tt)
)

T̃ 1,0,a
t = min

(
T 1,0,a
t , pαα(T 1,0,a

t / Tt)
)

T̃ 2,0,a
t = min

(
T 2,0,a
t , pαα(T 2,0,a

t / Tt)
)

T̃ 2,1,a
t = min

(
T 2,1,a
t , pαα(T 2,1,a

t / Tt)
)

as the number of individuals in each testing state that are able to receive testing results on a given day. We describe
the evolution of the disease states from time t to t+ 1 deterministically by the following equations:

Sat+1 = Sat − ξtβSat

 λ∑
j=1

Ma,jC
a
t +

λ∑
j=1

M̃a,jO
a
t

 (1)

Eat+1 = Eat + ξtβS
a
t

 λ∑
j=1

Ma,jC
a
t +

λ∑
j=1

M̃a,jO
a
t

− νEat (2)

Ã0,a
t+1 = Ã0,a

t + ζaνE
a
t + φ(1− ω)T̃ 0,0,a

t − wsrAÃ0,a
t − (1− ws)γÃ0,a

t (3)

Ã1,a
t+1 = Ã1,a

t + φωT̃ 0,0,a
t − γÃ1,a

t (4)

A0,a
t+1 = A0,a

t + (1− ζa)θaνE
a
t + φ(1− ω)T̃ 1,0,a

t (5)

− wAt rAA
0,a
t − (1− wAt )fAτAA

0,a
t − (1− wAt )(1− fA)γA0,a

t

A1,a
t+1 = A1,a

t + fAτAA
0,a
t + φωT̃ 1,0,a

t − γA1,a
t (6)

I0,0,at+1 = I0,0,at + (1− ζa)(1− θa)(1− q)(1− ρa)νEat + φ(1− ω)T̃ 2,0,a
t (7)

− wIt rII
0,0,a
t − (1− wIt )fIτII

0,0,a
t − (1− wIt )(1− fI)γI0,0,at

I1,0,at+1 = I1,0,at + (1− ζa)(1− θa)q(1− ρa)νEat + (1− wIt )fIτII
0,0,a
t + φωT̃ 2,0,a

t − γI1,0,at (8)

I0,1,at+1 = I0,1,at + (1− ζa)(1− θa)(1− q)ρaνEat + φ(1− ω)T̃ 2,1,a
t (9)

− wIt rII
0,1,a
t − (1− wIt )fIτII

0,1,a
t − (1− wIt )(1− fI)δI0,1,at

I1,1,at+1 = I1,1,at + (1− ζa)(1− θa)qρaνE
a
t + (1− wIt )fIτII

0,1,a
t + φωT̃ 2,1,a

t − δI1,1,at (10)

T 0,0,a
t+1 = T 0,0,a

t + wsrAÃ
0,a
t − φT̃

0,0,a
t − γT 0,0,a

t (11)

T 1,0,a
t+1 = T 1,0,a

t + wAt rAA
0,a
t − φT̃

1,0,a
t − γT 1,0,a

t (12)

T 2,0,a
t+1 = T 2,0,a

t + wIt rII
0,0,a
t − φT̃ 2,0,a

t − γT 2,0,a
t (13)

T 2,1,a
t+1 = T 2,1,a

t + wIt rII
0,1,a
t − φT̃ 2,1,a

t − δT 2,1,a
t (14)

H0,0,a
t+1 = H0,0,a

t + (1− ca)(1− wIt )(1− fI)δI0,1,at + (1− ca)δI1,1,at + (1− ca)δT 2,1,a
t (15)

− (mhµh + (1−mh)ψh)H0,0,a
t

H1,0,a
t+1 = H1,0,a

t + (1− v)ca(1− wIt )(1− fI)δI0,1,at + (1− v)caδI
1,1,a
t + (1− v)caδT

2,1,a
t (16)

− (mcµc + (1−mc)ψc)H
1,0,a
t

H1,1,a
t+1 = H1,1,a

t + vca(1− wIt )(1− fI)δI0,1,at + vcaδI
1,1,a
t + vcaδT

1,1,a
t − (mvµv + (1−mv)ψv)H

1,1,a
t (17)

Da
t+1 = Da

t +mhµhH
0,0,a
t +mcµcH

1,0,a
t +mvµvH

1,1,a
t (18)

Rat+1 = Rat + (1− wAt )(1− fA)γA0,a
t + γÃ1,a

t + (1− wAt )(1− fA)γA0,a
t (19)

+ γA1,a
t + (1− wIt )(1− fI)γI0,0,at + γI1,0,at + γT 0,0,a

t + γT 1,0,a
t + γT 2,0,a

t

+ (1−mh)ψhH
0,0,a
t + (1−mc)ψcH

1,0,a
t + (1−mv)ψvH

1,1,a
t

The evolution of the dynamic states ξt, w
A
t , and wIt from time t to t + 1 follow the constrained first-order

autoregressive (AR1) processes

ξt+1 = max(φξξt + εξ, 0) (20)

wAt+1 = min
(
max(φA(wAt − 1) + εw + 1, 0), 1

)
(21)

wIt+1 = min
(
max(φI(w

I
t − 1) + εw + 1, 0), 1

)
(22)
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where εξ and εw are independent, normally distributed random errors with mean 0 and standard deviations σξ
and σw, respectively. The AR1 processes are defined such that they are stationary and constrained to be either
nonnegative (ξt) or bounded by (0, 1) (wAt and wIt ). The asymptotic means E(ξt) = 0 and E(wAt ) = E(wIt ) = 1 are
such that the effective transmission rate approaches 0 and the proportion of mild and severe cases tested approaches
100% in the long run.

1.2 Observation equation

Let yt = (pt, ht, it, vt, dt)
′ be the observed data from The COVID Tracking Project, and let

T pt = φω

 λ∑
j=1

(
T̃ 0,0,j
t + T̃ 1,0,j

t + T̃ 2,0,j
t + T̃ 2,1,j

t

)
be the number of new positive tests at time t. We model the log of the observations by

log pt = log T pt + ηp (23)

log ht = log

 λ∑
j=1

(
H0,0,j
t +H1,0,j

t +H1,1,j
t

)+ ηh (24)

log it = log

 λ∑
j=1

(
H1,0,j
t +H1,1,j

t

)+ ηi (25)

log vt = log

 λ∑
j=1

H1,1,j
t

+ ηv (26)

log dt = log

 λ∑
j=1

Dj
t

+ ηd (27)

where ηp, ηh , ηi , ηv, and ηd are independent, normally distributed random errors with mean 0 and standard
deviations σp, σh, σi, σv, and σd, respectively. The data are modelled on the log scale in order to constrain
stochastic observations to be positive.

2 Model Calibration

Having formulated the state-space model, let θ represent all unknown fixed parameters. Then, we specify the
likelihood of an observation yt given the current state xt and fixed parameters θ by p(yt|xt, θ), which according
to equations 23 through 27 follows a log-normal density with mean Ft and covariance matrix Σt defined on the
log-scale by

Ft =



log T pt

log
[∑λ

j=1

(
H0,0,j
t +H1,0,j

t +H1,1,j
t

)]
log
[∑λ

j=1

(
H1,0,j
t +H1,1,j

t

)]
log
[∑λ

j=1H
1,1,j
t

]
log
[∑λ

j=1D
j
t

]


Σt =


σ2
p 0 0 0 0

0 σ2
h 0 0 0

0 0 σ2
i 0 0

0 0 0 σ2
v 0

0 0 0 0 σ2
d


The probability density of the future state xt+1 given the current state xt and fixed parameters θ, denoted by
p(xt+1|xt, θ), can be sampled from according to the deterministic state equations 1 through 19 and constrained
AR1 processes given by equations 20 through 22.

Let x1:t = (x1, . . . , xt) and y1:t = (y1, . . . , yt). We calibrate the model by sequentially estimating the filtered
distribution at time t+ 1, p(xt+1, θ|y1:t+1), given an estimate of the filtered distribution at time t, p(xt, θ|y1:t), and
a new data point, yt+1. Since the state equations are nonlinear functions of xt and θ, a closed-form solution to
p(xt+1, θ|y1:t+1) cannot be obtained. Thus, we use the kernel density particle filter (KDPF) described by Liu and
West (2001) to approximate p(xt, θ|y1:t) for all t.
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2.1 Kernel density particle filter

The KDPF approximates p(xt, θ|y1:t) via a weighted sample of J particles, i.e.

p(xt, θ|y1:t) ≈
J∑
j=1

w
(j)
t I

(
x
(j)
t , θ(j)

)
(28)

where
(
x
(j)
t , θ(j)

)
is the location of the jth particle at time t, w

(j)
t is the weight of that particle with

∑J
j=1 w

(j)
t = 1,

and I(x, θ) is the Dirac delta function that puts probability mass at (x, θ). To make the notation transparent, we

introduce subscripts for our fixed parameters, e.g. θ
(j)
t represents the value for θ at time t for particle j. This does

not imply that the true θ is dynamic, but rather that particle j can have different values for θ throughout time.
One advantage of the KDPF is that it attempts to avoid degeneration in particle values (i.e. all particles

end up having the same value) for fixed parameters that can result from repeated sampling. To do so, a kernel
density approximation to the distribution of fixed parameters is constructed so that fixed parameter values can be
regenerated at each time t. Let θ̄t and Vt be the weighted sample mean and weighted sample covariance matrix of

θ
(1)
t , . . . , θ

(J)
t . The KDPF uses a tuning parameter ∆, a discount factor that takes values in (0, 1), and two derived

quantities h2 = 1− ((3∆− 1)/2∆)2 and a2 = 1− h2 that determine how smooth the kernel density approximation
is.

Given an approximation to the filtered distribution at time t as in equation 28, the KDPF provides an approx-
imation to p(xt+1, θ|y1:t+1) by the following steps:

1. For each particle j, set m
(j)
t = aθ

(j)
t + (1 − a)θ̄t and calculate a point estimate of x

(j)
t+1 called µ

(j)
t+1, e.g.

µ
(j)
t+1 = E

(
xt+1

∣∣∣x(j)t , θ
(j)
t

)
.

2. Calculate auxiliary weights and renormalize:

g̃
(j)
t+1 = w

(j)
t p

(
yt+1

∣∣∣µ(j)
t+1,m

(j)
t

)
g
(j)
t+1 = g̃

(j)
t+1

/
J∑
l=1

g̃
(l)
t+1.

3. For each particle j = 1, . . . , J ,

(a) Resample: sample an index k ∈ {1, . . . , j, . . . , J} with associated probabilities
{
g
(1)
t+1, . . . , g

(j)
t+1, . . . , g

(J)
t+1

}
,

(b) Regenerate the fixed parameters: sample θ
(j)
t+1 ∼ N

(
m

(k)
t , h2Vt

)
,

(c) Propagate: sample x
(j)
t+1 ∼ p

(
xt+1

∣∣∣x(k)t , θ
(j)
t+1

)
, and

(d) Calculate weights and renormalize:

w̃
(j)
t+1 =

p
(
yt+1

∣∣∣x(j)t+1, θ
(j)
t+1

)
p
(
yt+1

∣∣∣µ(k)
t+1,m

(k)
t

) w
(j)
t+1 = w̃

(j)
t+1

/
J∑
l=1

w̃
(l)
t+1.

In the above implementation of the KDPF, we use a normal kernel, where N(µ,Σ) represents the normal distribution

with mean µ and covariance matrix Σ. For the point estimate of the future state for particle j, µ
(j)
t+1, we use the

deterministic state equations 1 through 19 and the conditional expectation of the AR1 processes from equations
20 through 22:

E
(
ξ̃t+1 |xt, θt

)
= max(φξ ξ̃t, 0)

E
(
w̃At+1 |xt, θt

)
= min

(
max(φA(w̃At − 1) + 1, 0), 1

)
E
(
w̃It+1 |xt, θt

)
= min

(
max(φI(w̃

I
t − 1) + 1, 0), 1

)
To use the KDPF with normal kernels, it is necessary to parameterize the fixed parameters so that their support

is on the real line. We used the logarithm transformation for parameters that have positive support and the logit
transformation for parameters in the interval (0,1).
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2.2 KDPF Implementation

The KDPF was run on data collected daily by The COVID Tracking Project for the whole US. The time period
of data collection that was analyzed was from 1/22/2020 through 8/21/2020, and time iterations of the KDPF
corresponded to days (such that t = 0 corresponded to 1/21/2020, t = 1 to 1/22/2020, and so on). Four age
categories were used in the age-stratified compartmental model (0-19, 20-49, 50-64, 65 and over), with the population
size of each age group taken from US census data (https://www2.census.gov/programs-surveys/popest/) and shown
in Table S2.

In order to avoid particle degeneracy in the KDPF, J = 500000 particles were used. Following recommendations
from Liu and West (2001) and Sheinson et al. (2014), the discount factor ∆ was set to 0.99 and stratified resampling
with an effective sample size threshold of 0.8 was implemented using R package smcUtils (Niemi, 2012). All hospi-
talization parameters shown in Table S1, the proportion of testing capacity applied to infected population (pα), and
the observation standard deviation parameters σp, σh, σi, σv, and σd were assumed to be unknown. All other fixed
parameters were assumed to be known and set at fixed values shown in Table S2. The KDPF runs were initialized
by assuming 1 exposed individual in each age group. The unknown fixed parameters and initial states of the AR1
processes were sampled from independent prior distributions shown in Table S4. The KDPF was implemented in
R version 3.5.3 (R Core Team, 2019) and the code is available on Github (https://github.com/Roche/covid-hcru-
model).

3 Results

Estimates of the marginal filtered distributions of unknown fixed parameters were summarized in terms of their
posterior means and 95% credible intervals, calculated via monte carlo estimates from the weighted particle samples
(Table S5). In addition, these were calculated for aggregates of model states (e.g. for combining age groups) by
summing the values of individual states together for each particle. Figure S2 displays these estimates for resource
utilization over time.

Particle trajectories (or traces) were calculated for each of the unknown states by tracing the most recent value
of each particle back to each parent particle from which it was resampled. From these traces, a mean particle
trace could be calculated by taking the average particle trace at each time point. Alternatively, the particle trace
that minimizes the sum of squared distances (SSd) between observed and traced resource utilization could be
determined. The SSd-minimizing particle trace combined with the assumed values of known fixed parameters and
posterior mean estimates of the unknown fixed parameters were used to simulate a pandemic similar to the one
observed in the US and to generate the various testing and treatment scenarios discussed in the main manuscript.
Figure S3 displays the simulated trajectories for each of the resource utilization states presented in Figure S2.
Figure S4 shows the mean, SSd-minimizing, and individual particle traces for changes in the time-varying effective
transmission rate, proportion of mild cases tested over time, and proportion of severe cases tested over time.
Table S6 shows assumptions around treatment efficacy and expanded molecular diagnostic testing and how they
were used to modify fixed parameters to represent different model scenarios.
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Parameter Value(s) Source
Age 0-19 Age 20-44 Age 50-64 Age 65+

Transmission parameters
Pa 82500000 132000000 62700000 52800000 US Census
β 0.0493 Moghadas et al. (2020)

M0−19,a 9.76 3.77 1.51 0.60 Moghadas et al. (2020)
M20−49,a 3.77 9.43 3.05 0.70 Moghadas et al. (2020)
M50−64,a 1.51 3.05 2.96 0.76 Moghadas et al. (2020)
M65+,a 0.60 0.70 0.76 0.60 Moghadas et al. (2020)

M̃0−19,a 2.04 1.56 0.50 0.38 Moghadas et al. (2020)

M̃20−49,a 1.56 1.51 0.45 0.24 Moghadas et al. (2020)

M̃50−64,a 0.50 0.45 1.04 0.19 Moghadas et al. (2020)

M̃65+,a 0.38 0.24 0.19 0.64 Moghadas et al. (2020)
κM 0.5 Moghadas et al. (2020)
κA 0.5 Assumption
ν ≥ 0 1 / 5.2 Moghadas et al. (2020)

Symptoms and behavioral parameters
ζa 0.179 Mizumoto et al. (2020)
θa 0.973 0.900 0.648 0.466 WHO (2020), scaled to Moghadas et al. (2020)
γ 1 / 4.6 Moghadas et al. (2020)
q 0.05 Moghadas et al. (2020)
fI 0.8 Moghadas et al. (2020)
fA 0.05 Moghadas et al. (2020)
fT 0.7 Assumption
τI 1 / 1 Moghadas et al. (2020)
τA 1 / 2 Moghadas et al. (2020)
φξ 0.95 Assumption
σξ 0.25 Assumption

Testing parameters
ws 0.1 Assumption
rI 1 / 2 Assumption
rA 1 / 3 Assumption
φ 1 / 2.3 Average of multiple tests, see Table S3
ω 0.972 Average of multiple tests, see Table S3
φI 0.995 Assumption
φA 0.99 Assumption
σw 0.1 Assumption
α 1122898 Market research, US Census data

Table S2: Assumed values of fixed parameters.

Test system Market share (sj)
Daily

Throughput
(range)

Sensitivity (ωj)
Turnaround
time (1/φj)

Source

Poljak et al. (2020)
HT 43.2% 470 - 2880 98.4% 2 Degli-Angeli et al. (2020)

Hogan et al. (2020)
POC 11.8% 32 93.0% 1 Zhen et al. (2020)
LDT 25.0% 16 97.2% 3 Set to average of commercial tests
CDC 10.0% 16 97.2% 3 Set to average of commercial tests
Other 10.0% 35 97.2% 2.3 Set to overall average

Table S3: Testing capacity and system performance.
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Parameter Distribution Mean
Standard Deviation
(hyperparameters)

Source for mean

pα Beta 0.1 0.0420 (shape = 5, rate = 45) Assumption
σp Gamma 0.5 0.1000 (shape = 25, rate = 50) Assumption

ρ0−19 Beta 0.592 0.0688 (a = 29.6, b = 20.4) Petrilli et al. (2020)
ρ20−49 Beta 0.350 0.0668 (a = 17.5, b = 32.5) Petrilli et al. (2020)
ρ50−64 Beta 0.573 0.0693 (a = 28.65, b = 21.35) Petrilli et al. (2020)
ρ65+ Beta 0.698 0.0643 (a = 34.9, b = 15.1) Petrilli et al. (2020)
σh Gamma 0.5 0.1000 (shape = 25, rate = 50) Assumption
δ Gamma 1 / 7 0.0535 (shape = 7.14, rate = 50) Garg (2020)
ψh Gamma 1 / 8.3 0.0491 (shape = 6.02, rate = 50) Beigel et al. (2020)
ψc Gamma 1 / 22 0.0302 (shape = 2.27, rate = 50) Beigel et al. (2020)
ψv Gamma 1 / 28 0.0267 (shape = 1.79, rate = 50) Beigel et al. (2020)
c0−19 Beta 0.152 0.1082 (a = 1.52, b = 8.48) Richardson et al. (2020)
c20−49 Beta 0.215 0.1239 (a = 2.15, b = 7.85) Richardson et al. (2020)
c50−64 Beta 0.215 0.1239 (a = 2.15, b = 7.85) Richardson et al. (2020)
c65+ Beta 0.237 0.1282 (a = 2.37, b = 7.63) Richardson et al. (2020)
σi Gamma 0.5 0.1000 (shape = 25, rate = 50) Assumption
v Beta 0.6 0.1477 (a = 6, b = 4) Assumption
σv Gamma 0.5 0.1000 (shape = 25, rate = 50) Assumption
mh Beta 0.067 0.0754 (a = 0.67, b = 9.33) Derived from Petrilli et al. (2020)
mc Beta 0.048 0.0645 (a = 0.48, b = 9.52) Derived from Petrilli et al. (2020)
mv Beta 0.099 0.0900 (a = 0.99, b = 9.01) Derived from Petrilli et al. (2020)
µh Gamma 1 / 9.7 0.0454 (shape = 5.15, rate = 50) Moghadas et al. (2020)
µc Gamma 1 / 6.0 0.0577 (shape = 8.33, rate = 50) ICNARC (2020)
µv Gamma 1 / 5.4 0.0609 (shape = 9.26, rate = 50) Argenziano et al. (2020)
σd Gamma 0.5 0.1000 (shape = 25, rate = 50) Assumption

Initial state Distribution Mean
Standard Deviation
(hyperparameters)

Source for mean

ξ0 Log-normal 2 (log-scale) 0.3 (log-scale) Assumption
wA0 Beta 0.1 0.0299 (a = 10, b = 90) Assumption
wI0 Beta 0.1 0.0299 (a = 10, b = 90) Assumption

Table S4: Prior distributions of unknown parameters.

Parameter Posterior Mean
Age 0-19 Age 20-44 Age 50-64 Age 65+

pα 0.0983
ρa 0.5961 0.4301 0.5228 0.7659
δ 0.1303
ψh 0.0580
ψc 0.0556
ψv 0.0484
ca 0.1034 0.2058 0.1083 0.1420
v 0.3556
mh 0.2591
mc 0.0887
mv 0.0002
µh 0.1441
µc 0.1464
µv 0.1249

Table S5: Posterior means of unknown fixed parameters.
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Figure S2: Posterior means (green lines) and 95% credible intervals (blue lines) of the marginal filtered distributions
for resource utilization (panels) in the United States, alongside observed data (red lines).

Figure S3: Simulated (blue lines) and observed (red lines) resource utilization (panels) in the United States.
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Figure S4: SSd-minimizing (thick black lines) and mean (thin black lines) particle traces of multiplicative changes
in the effective transmission rate (top), proportion of mild cases tested (middle), and proportion of severe cases
tested (bottom) over time in the United States. Dashed black lines denote the posterior means of the marginal
filtered distributions and gray lines show the individual particle traces.

11



Scenario
Modifications to model parameters

(modified values denoted by *)
No testing capacity or treatment -α∗ set to 0 (No testing capacity)

(Reference scenario) -w∗s set to 0 (No asymptomatic testing)
-Mortality hazard ratios set to 1.25, 1.25, and 1.54
for non-ICU, ICU w/o vent, and ICU w/ vent patients, respectively
(reverse the mortality benefit of dexamethasone, assuming 50% of
patients treated since Day 1 (1/22/2020) of the model)
-Refer to Section 4 for detailed calculation on mortality

No private sector treatment or testing -α∗ set to sj × α, where sj set to 0 for all except LDT and CDC
(Public sector only) -s∗j ’s renormalized to sum to 1

Private sector treatment but not testing -α∗ set to sj × α, where sj set to 0 for all except LDT and CDC
(Public + private sector) -s∗j ’s renormalized to sum to 1

-Length of stay for non-ICU patients reduced by 2.89 days,
assuming 50% of patients are treated starting 6/1/2020(
ψ∗h = 1

1
ψh
−0.5×2.89

)
-Mortality hazard ratio for non-ICU patients of 0.28
-Refer to Section 4 for detailed calculation on mortality

Private sector testing but not treatment -No change to model parameters
(Public + private sector)

Private sector treatment and testing -No change in testing parameters
(Public + private sector) -Length of stay for non-ICU patients reduced by 2.89 days,

assuming 50% of patients are treated starting 6/1/2020(
ψ∗h = 1

1
ψh
−0.5×2.89

)
-Mortality hazard ratio for non-ICU patients of 0.28
-Refer to Section 4 for detailed calculation on mortality

Table S6: Model scenario assumptions and corresponding modifications to model parameters.
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4 Mortality Calculations

To apply the hazard ratio for the treatment effect, first the probability of death in the hospital (pm) is calculated
using the weights associated with mortality (m), mortality rates (µ), and recovery rates (ψ). As in Moghadas et al.
(2020), we calculate this probability as

pm =
mµ

mµ+ (1−m)ψ

Then, we apply the hazard ratio for the mortality benefit to calculate the probability of death in the hospital among
treated patients (p∗m) according to

p∗m = pm − ptrt
(
pm −

[
1− (1− pm)HR

])
where ptrt is the proportion of patients treated and HR is the hazard ratio. For example, in our model scenarios
incorporating private sector treatment benefit, ptrt is assumed to be 0.5 and HR is assumed to be 0.28 (Beigel
et al., 2020). Finally, modified model weights (m∗) are then back-calculated according to

m∗ =
p∗mψ

p∗mψ + (1− p∗m)µ

5 Limitations

A few technical limitations regarding the model and estimation procedures are worth noting. First, observed
data from The COVID Tracking Project are based on reported numbers from state and territory public health
authorities. Not all states report each type of data, and they may vary in terms of their completeness. In addition,
the reporting of the data is expected to lag behind actual cases. For more information on the data quality, refer to
The COVID Tracking Project website (https://covidtracking.com/about-data).

In addition, the model may suffer from identifiability issues due to the large number of unknown states and
fixed parameters. Thus, while calibration to the observed data may result in an accurate depiction of estimated
resource use, testing, and mortality, individual model state and parameter estimates should be interpreted with
caution, since multiple combinations of state and parameter values could result in similar estimates of resource use,
testing, or mortality.

Lastly, simulated model scenarios assume that modifications to fixed parameters reflecting the impact of treat-
ment and testing happen instantaneously at a single point in time, whereas a model that would allow for these
parameters to change gradually over time is probably more reflective of reality. We made simplifying assumptions
that 1. removal of public sector treatment and testing means that 50% of patients lose the clinical benefits of
dexamethasone, and that LDT and CDC testing capacity are reduced to 0 starting at Day 1 of the model; and 2.
addition of private sector treatment and testing means 50% of patients receive the clinical benefits of remdesivir,
and that HT, POC, and other commercial testing capacity become available starting at 6/1/2020 (Day 132) of the
model.
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