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SUPPLEMENTARY MATERIALS 
 
Appendix S1 Extended methodology for determining regression analysis 
 
A linear mixed-effects regression analysis was fitted to all estimated glomerular filtration rate (eGFR) 
measurements within the study period, irrespective of the number of measurements per patient and the 
timings of these measurements. The linear mixed-effects model was fitted to eGFR measurements in 
terms of time in years and baseline covariates. Each patient was given their own distinct eGFR 
trajectory over time, by including a random patient-level intercept and a random patient-level effect of 
time. The effect of missing data was coded as 1 (missing) versus 0 (not missing) as an indicator 
(missing data indicator) and accounted for in the modelling. Within the microsimulation, the decline 
rate for each individual was based on the generated β coefficients. 
 
Patients were grouped into slow versus rapid progressors based on their unadjusted eGFR trajectories. 
The cut-offs were based on published literature (e.g., rapid progressor with eGFR > 4 mL/minute/1.73 
m2). eGFR measures of less than 5 mL/minute/1.73 m2 were excluded (eGFR only, not the patient). 
To produce the coefficients presented in Table 5, an unadjusted linear mixed-effects regression model 
was run overall, for patients grouped into normala eGFR decline, for patients grouped into rapid eGFR 
decline, and for patients with each of the following: 
 

• overallb 
• type 2 diabetes (T2D) at baseline versus no T2D at baselineb 
• heart failure (HF) at baseline versus no HF at baselineb 
• T2D + HF at baseline versus no T2D + HF at baselineb 
• hypertension (HTN) at baseline versus no HTN at baselineb 

– overallc 
– controlled (defined as blood pressure (BP) < 140/90 with/without therapy 

[renin–angiotensin–aldosterone system inhibitors, calcium channel blockers, 
β blockers, α blockers, diuretics, and mineralocorticoid receptor 
antagonists])c 

– uncontrolled (defined as BP > 140/90 with/without therapy [renin–
angiotensin–aldosterone system inhibitors, calcium channel blockers, β 
blockers, α blockers, diuretics, and mineralocorticoid receptor antagonists])e 

• patients without T2D, HF, and HTN at baselineb. 
 

 
aBased on the overall slope analysis, patients were allocated to normal and rapid progressor groups and mean slopes 
within groups were calculated based on the overall slope analysis.  
bPatients were allocated to these specific groups based on the presence or absence of comorbidities at baseline and mean 
slopes were calculated based on the overall slope analysis. 
cDefined as BP and/or HTN code and/or therapy. Those with missing BP values could not be included in the 
controlled/uncontrolled groups. 



Appendix S2 Data sources for input parameters 
 

Parameter Example sources Year 

Population (total population, age and 
sex break down, population growth 
rate) 

United Nations population 
statistics, National Population 
Database 

Year 2020 and projections 

CKD prevalence by stage 
(eGFR/albuminuria) 

National dataset or published 
sources e.g., NHANES, HSE, 
CPRD-HES linked 

Most recent 5+ years of data to 
plot trends 

Prevalence and relative/absolute risk 
for impact of CKD and other 
comorbidities on study outcomes 

Literature review Most recent/robust 

Prevalence and relative/absolute risk 
of complications (stroke, MI, heart 
failure) on study outcomes 

Literature review Most recent/robust 

Renal replacement therapy data National Renal Registry data  Most recent/robust 

Direct and indirect health costs 
(including care burden, cost of 
screening) 

Literature review Most recent/robust 

Health state utility weights  Literature review Most recent/robust 

Screening intervention data Literature review Most recent/robust 

CKD chronic kidney disease, CPRD Clinical Practice Research Datalink, eGFR estimated glomerular 
filtration rate, HSE Health Survey England, MI myocardial infarction, NHANES National Health and 
Nutrition Examination Survey



Appendix S3 Microsimulation model framework 
 
The HealthLumen software consists of two models. The first model is a sophisticated regression 
model that calculates the predictions of risk factor trends over time based on data from rolling cross-
sectional studies. The second model performs the microsimulation of a virtual population, generated 
with demographic characteristics matching those of the observed data. The health trajectory of each 
individual from the population is simulated over time allowing them to contract, survive, or die from a 
set of diseases or injuries related to the analysed risk factors. A detailed description of the two models 
is presented below. 
 
Model One: Predictions of Risk Factors Over Time 

A logistic multinomial regression was applied to eGFR and albumin distributions to obtain regression 
coefficients using the following assumptions.  
 
For the risk factor, let N be the number of categories for a given risk factor, e.g., N = 3 for albuminuria 
and N = 6 for eGFR. Let 𝑘𝑘 = 1, 2, …, N number these categories and 𝑝𝑝𝑘𝑘(𝑡𝑡) denote the prevalence of 
individuals with risk factor values that correspond to the category 𝑘𝑘 at time t. We estimate 𝑝𝑝𝑘𝑘(𝑡𝑡) using 
a multinomial logistic regression model with prevalence of risk factor category 𝑘𝑘 as the outcome and 
time t as a single explanatory variable. For 𝑘𝑘 < 𝑁𝑁, we have: 
 

  (1.1) 
 
The prevalence of the first category is obtained by using the normalization constraint ∑ 𝑝𝑝𝑘𝑘(𝑡𝑡)𝑁𝑁

𝑘𝑘=1 = 1. 
Solving equation (1.1) for 𝑝𝑝𝑘𝑘(𝑡𝑡), we obtain: 
 

  (1.2) 
 
which respects all constraints on the prevalence values, i.e., normalization and [0, 1] bounds. 
 
Measured data consist of sets of probabilities, with their variances, at specific time values (typically 
the year of the survey). For any particular time, the sum of these probabilities is unity. Each data point 
is treated as a normally distributed random variable; together they are a set of N groups (number of 
years) of K probabilities [63K – 1]] | i∈0,N – 1]}.  
 
For each year the set of K probabilities form a distribution and their sum is equal to unity. 
The regression consists of fitting a set of logistic functions [28K – 1]] to these data – one function for 
each k-value. At each time value, the sum of these functions is unity. Thus, for example, when 
measuring albuminuria in the three states already mentioned, the k = 0 regression function represents 
the probability of no albuminuria (A1) over time, k = 1 the probability of microalbuminuria (A2), and 
k = 2 the probability of macroalbuminuria (A3). 
 
The regression equations are most easily derived from a familiar least-squares minimization. In the 
following equation set, the weighted difference between the measured and predicted probabilities is 
written as S; the logistic regression functions pk(a,b;t) are chosen to be ratios of sums of exponentials 
(this is equivalent to modelling the log probability ratios, pk/p0, as linear functions of time). 
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  (1.3) 

  (1.4) 
 
The parameters A0, a0, and b0 are all zero and are used merely to preserve the symmetry of the 
expressions and their manipulation. For a K-dimensional set of probabilities there will be 2(K – 1) 
regression parameters to be determined. 
 
For a given dimension K, there are K – 1 independent functions pk – the remaining function being 
determined from the requirement that a complete set of K forms a distribution and sum to unity. Note 
that the parameterization ensures the necessary requirement that each pk be interpretable as a 
probability – a real number lying between 0 and 1. 
 
The minimum of the function S is determined from the equations: 
 

  (1.5) 
 
noting the relations: 
 

  (1.6) 
 
The values of the vectors a, b that satisfy these equations are denoted . They provide the trend 

lines , for the separate probabilities. 
 
The regression equations are most easily derived from a familiar least-squares minimization. In the 
following equation set the weighted difference between the measured and predicted probabilities is 
written as S; the logistic regression functions pk(a,b;t) are chosen to be ratios of sums of exponentials 
(this is equivalent to modelling the log probability ratios, pk/p0, as linear functions of time). 

   (1.7) 
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   (1.8) 

 
The parameters A0, a0, and b0 are all zero and are used merely to preserve the symmetry of the 
expressions and their manipulation. For a K-dimensional set of probabilities there will be 2(K – 1) 
regression parameters to be determined.  
 
For a given dimension K, there are K – 1 independent functions pk – the remaining function being 
determined from the requirement that a complete set of K forms a distribution and sum to unity. 
Note that the parameterization ensures the necessary requirement that each pk be interpretable as a 
probability – a real number lying between 0 and 1. 
 
The minimum of the function S is determined from the equations:  

   (1.9) 

 
noting the relations. 

   (1.10) 

 
The values of the vectors a, b that satisfy these equations are denoted . They provide the trend 
lines, , for the separate probabilities.  
 

Bayesian Interpretation 
The 2K – 2 regression parameters are regarded as random variables of which posterior distribution is 
proportional to the function exp(– S(a,b)). The maximum likelihood estimate of this probability 
distribution function, the minimum of the function S, is obtained at the values . Other properties of 
the (2K – 2)-dimensional probability distribution function are obtained by first approximating it as a 
(2K – 2)-dimensional normal distribution, the mean of which is the maximum likelihood estimate. 
This amounts to expanding the function S(a,b) in a Taylor series as far as terms quadratic in the 
differences  about the maximum likelihood estimate . Hence: 
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   (1.11) 

 
The (2K – 2)-dimensional covariance matrix P is the inverse of the appropriate expansion coefficients. 
This matrix is central to the construction of the confidence limits for the trend lines.   
 
 
Model Two: Microsimulation Model 

Simulated people are generated with the correct demographic statistics in the simulation’s start year. 
In this year, females are stochastically allocated a number of children and the birth dates of their 
children – these are generated from known fertility and mothers’ age at birth statistics (valid in the 
start year). If a female has children, those children are generated as members of the simulation in the 
appropriate birth year. The microsimulation is provided with a list of relevant diseases. These diseases 
are allocated using the best available data regarding incidence, mortality, survival, relative risk, and 
prevalence statistics (by age and gender). The virtual population is initialized with diseases by 
simulating each individual from birth until the start year of the model simulation. It assumes that a 
person can die before the model start year. It is assumed that at initialization the diseases are 
independent random variables. In the course of their lives, simulated people can die from one of the 
diseases caused by a particular risk factor that they might have acquired or from some other cause. The 
probability that a person of a given age and gender dies from a cause other than the disease is 
calculated in terms of known death and disease statistics valid in the start year. This rate is constant 
over the course of the simulation. The survival rates from the risk factor-related diseases will change 
as a consequence of the changing distribution of the risk factor in the population.  
 
The microsimulation incorporates a sophisticated economic module. The module employs Markov-
type simulation of long-term health benefits, healthcare costs, and non-healthcare-related costs of 
specified interventions. It synthesizes and estimates evidence for the cost-utility analysis. The model is 
used to project the differences in quality-adjusted life-years (QALYs), lifetime healthcare costs, 
premature mortality costs, and indirect costs as a consequence of interventions over a specified 
timescale. Outputs can be discounted for any specific discount rate. 
 
The confidence limits that accompany the sets of output data represent the accuracy of the 
microsimulation (stochastic or aleatoric uncertainty) as opposed to the confidence of the input data 
itself (parameter uncertainty). Errors around the input data were not available.  

Population Module 
The population module contains several data sets that can be edited by the end user through a user 
interface. The population is created in the start year and propagated forward in time by allowing 
females to give birth, and population projections can be incorporated (i.e., migration through 
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minimum arrivals and departures). People within the model can die from specific diseases or from 
other causes. The <deaths by year by sex by age> file is a necessary input to the model when valid 
population projections are being used in the start year and is usually referred to as the ‘deaths from all 
causes’ file. This module is flexible and allows the user to run open and closed populations with no 
births. 

Distributions 
Distribution name Symbol Note 

MalesByAgeByYear 𝑝𝑝𝑚𝑚(𝑎𝑎) Input in year0 – probability of a male having age a 

FemalesByAgeByYear 𝑝𝑝𝑓𝑓(𝑎𝑎) Input in year0 – probability of a female having age a 

BirthsByAgeofMother 𝑝𝑝𝑏𝑏(𝑎𝑎) Input in year0 – conditional probability of a birth at age a/the 
mother gives birth 

NumberOfBirths 𝑝𝑝𝑙𝑙(𝑛𝑛) λ≡TFR, Poisson distribution, probability of giving birth to n 
children 

MaleDeathByAge 𝑝𝑝𝑊𝑊𝑚𝑚(𝑎𝑎) Input in year0, probability of a male dying at age a 

FemaleDeathByAge 𝑝𝑝𝑊𝑊𝑓𝑓(𝑎𝑎) Input in year0, probability of a female dying at age a  

TFR total fertility rate 

Birth Model 
Any female of childbearing age is deemed capable of giving birth. The number of children, n, that she 
has in her life is dictated by the Poisson distribution 𝑝𝑝𝑙𝑙(𝑛𝑛) where the mean of the Poisson distribution 
is the total fertility rate (TFR) parameter.d

 
dThis could be made to be time dependent; in the baseline model it is constant. 



The probability that a mother (who does give birth) gives birth to a child at age a is determined from 
the BirthsByAgeOfMother distribution as 𝑝𝑝𝑏𝑏(𝑎𝑎). For any particular mother, the births of multiple 
children are treated as independent events, so that the probability that a mother who produces N 
children produces n of them at age a is given as the binomially distributed variable, 

   (1.15) 

 
The probability that the mother gives birth to n children at age a is 

   (1.16) 

 
Performing the summation in this equation gives the simplifying result that the probability pb(n at a) 
is itself Poisson distributed with mean parameter 𝜆𝜆𝑝𝑝𝑏𝑏(𝑎𝑎), 

   (1.17) 

 
Thus, on average, a mother at age 𝑎𝑎 will produce 𝜆𝜆𝑝𝑝𝑏𝑏(𝑎𝑎) children in that year. The gender of the 
children is determined by the probability pmale=1 – pfemale. In the baseline model, this is taken to be the 
probability Nm/(Nm + Nf). The probability of child gender can be made time dependent. 
 
The ‘Population Editor’ menu item Population Editor\Tools\Births\Show Random Birth list creates an 
instance of the TPopulation class and uses it to generate and list a (selectable) sample of mothers and 
the years in which they give birth. 

Time-Dependent Birth Rates  
The TFR parameter for future years can be input from the input file if known – or otherwise modelled. 
In general, the TFR parameter is kept constant over time. In each year of their simulated life (y at age 
a), mothers of childbearing age can use the appropriate Poisson parameter 𝜆𝜆(𝑎𝑎)𝑝𝑝𝑏𝑏(𝑎𝑎) to generate the 
number of children in that year. Each child is recorded in the mother’s ‘Life Event’ list and processed 
as part of the current family at the end of the mother’s life.  

Population Dynamics 
In one year, Y, the population will consist of Nm males and Nf females with their respective age 
distributions. In the next year, Y’, the numbers will have been depleted by deaths and augmented by 
the Nnewborn births. The new, primed population is determined from the old population by the following 
equation set: 
 

   (1.18) 
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   (1.20) 
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   (1.25) 

The ‘Population Editor’ menu item Population Editor\View\Population Dynamics\Male implements 
these equations and draws projected populations year by year. 

Deaths From Modelled Diseases 
The simulation models any number of specified diseases, some of which may be fatal. In the start year 
the simulation’s death model uses the mortality statistics of diseases to adjust the probabilities of 
death by age and gender. In the start year the net effect is to maintain the same probability of death by 
age and gender as before; in subsequent years, however, the rates at which people die from modelled 
diseases will change as modelled risk factors change. The population dynamics outlined above will be 
only an approximation of the simulated population’s dynamics. The latter will be known only on 
completion of the simulation. 

Multiple Population Processing 
Multiple populations can be used in a simulation provided they are non-overlapping (people cannot 
belong to both). 
 
In a simulation, Monte Carlo trials are allocated between different current populations in proportion to 
their total person count (malesCount + femalesCount). The idea being to provide a representative 
sample of the combined population. In a simulation, a population (pop) is current if the simulated year 
Y satisfies   
 

   (1.26) 

 

Open Populations 
This model is an open population model that allows people to enter and to depart from the population 
(departure probability pδ(t)). 
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Open Population, Births, and Deaths 
In the year y, the number of males and females in the population are denoted as {Nm(a,y), Nf(a,y)}, 
and we suppose that they have departure probabilities {pmδ(a,y), pfδ(a,y)}.The number of new arrivals 
into each age in the year Y are denoted {NmArr(a,y), NfArr(a,y)}. The following analysis applies equally 
to males and females, and we drop the gender suffix. The male and female populations grow 
according to the recursion relations: 
 

   (1.27) 

   (1.28) 

 

The Longitudinal Modelling of Populations Having Known Cross-Sectional Data 
Given a set of X-sectional population projections {Km(a,y), Kf(a,y)|0 < = a < = 100; Y0 < = y < = Y1} 
(the K-population) the question arises of how to model the lives of individuals within the population 
(the N-population). In the absence of precise arrival (immigration) and departure (emigration) 
statistics, many solutions exist. The population is constructed iteratively: given the population in year 
Y the population of the next year is calculated from the known birth and death rates. Thus, the 
departure probabilities and arrival numbers are found by matching with the projected K-population.  

Minimum Arrival and Departure Model 
The minimum arrival and departure model fixes the modelled N-population in the start year and 
compensates in subsequent years either by having non-zero departure statistics (if N > K) or by 
importing new people (K > N).        
From equation (1.27): 
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The implementation of this model can be arranged using multiple populations – one population for 
each year of the simulation. The first population consists of the baseline model that matches the N- 
and K-populations in the start year; subsequent populations contain the corrections (the arrivals, if any 
in that year). When arrivals enter the simulated population, they have a start year corresponding to 
this population’s start year. They usually will have been modelled from birth in the appropriate risk 
and disease environment. Arrivals are ordinary members of the modelled population – they simply 
enter the population at times after the simulation start time. Arrivals carry with them a population 
identifier. The numbers of males and females and their ages are known for all populations. Within the 
microsimulation multiple populations are sampled at a rate proportional to their population size. 

Risk Factor Module 
The distribution of risk factors in the population is estimated using regression analysis stratified by 
both sex S = {male, female} and age group A = {0–9, 10–19, ..., 70–79, 80+}. The fitted trends are 
extrapolated to forecast the distribution of each risk factor category in the future. For each sex-and-
age-group stratum, the set of cross-sectional, time-dependent, discrete distributions 𝐷𝐷 = {𝑝𝑝𝑘𝑘(𝑡𝑡)|𝑘𝑘 =
1, …𝑁𝑁;  𝑡𝑡 > 0} is used to manufacture risk factor trends for individual members of the population.  
We model the urine–albumin and eGFR risk factors continuously. 
 
In the case of a continuous risk factor, for each discrete distribution 𝐷𝐷 there is a continuous 
counterpart. Let 𝛽𝛽 denote the risk factor value in the continuous scale and let 𝑓𝑓(𝛽𝛽|𝐴𝐴, 𝑆𝑆, 𝑡𝑡) be the 
probability density function of 𝛽𝛽 for age group 𝐴𝐴 and sex 𝑆𝑆 at time 𝑡𝑡. Then: 
  

   (1.31) 

 
Equations (1.2) and (1.31) both refer to the same quantity. However, equation (1.31) uses the 
definition of the probability density function to express the age- and sex-specific percentage of 
individuals in risk factor category k at time t. Equation (1.2) gives an estimate of this quantity using 
equation (1.1) for all k = 0, …, N. The cumulative distribution function of 𝛽𝛽 is: 
 

   (1.32) 

 
At time t, a person with sex 𝑆𝑆 belonging to the age group 𝐴𝐴 is said to be on the 𝑝𝑝–th percentile of this 
distribution if 𝐹𝐹(𝛽𝛽|𝐴𝐴, 𝑆𝑆, 𝑡𝑡) = 𝑝𝑝/100. Given the cross-sectional information from the set of 
distributions 𝐷𝐷, it is possible to simulate longitudinal trajectories by forming pseudo-cohorts within 
the population. A key requirement for these sets of longitudinal trajectories is that they reproduce the 
cross-sectional distribution of risk factor categories for any year with available data. The method 
adopted here is based on the assumption that a person’s risk factor value changes throughout their 
lives in such a way that they always have the same associated percentile rank. As they age, individuals 
move from one age group to another and their risk factor value changes so that they have the same 
percentile rank but of a different risk factor distribution. In a nutshell, we assume (in accordance with 
research on the long-term success rate in dieting) that relatively high-risk people will remain 
relatively high risk and that relatively low-risk people will remain relatively low risk. Crucially, it 
meets the important condition that the cross-sectional risk factor distributions obtained by simulation 
match the risk factor distributions of the observed data. 
 
The above procedure can be explained using the example of the albuminuria distributions. The 
albuminuria distributions are known for the population stratified by sex and age for all years of the 
simulation (by extrapolation of fitted model, see equation (1.1)). A person who is in age group 𝐴𝐴 and 
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who grows 10 years older will at some time move into the next age group 𝐴𝐴′ and will have an 
albuminuria that was described first by the distribution 𝑓𝑓(𝛽𝛽|𝐴𝐴, 𝑆𝑆, 𝑡𝑡) and then 
at the later time 𝑡𝑡′ by the distribution 𝑓𝑓(𝛽𝛽|𝐴𝐴′, 𝑆𝑆, 𝑡𝑡′). If the albuminuria of that individual is on the 𝑝𝑝-th 
percentile of the albuminuria distribution, their albuminuria will change from 𝛽𝛽 to 𝛽𝛽′ so that: 
 

   (1.33) 

   (1.34) 

 
Where 𝐹𝐹−1 is the inverse of the cumulative distribution function of 𝛽𝛽, which we model with a 
continuous uniform, normal, or lognormal distribution (depending on the risk factor) within the risk 
factor categories. Equation (1.34) guarantees that the transformation taking the random variable 𝛽𝛽 to 
𝛽𝛽′ ensures the correct cross-sectional distribution at time 𝑡𝑡′.  
 
The microsimulation first generates individuals from the risk factor distributions of the set 𝐷𝐷 and, 
once generated, grows the individual’s risk factors in a way that is also determined by the set 𝐷𝐷. It is 
possible to implement equation (1.34) as a suitably fast algorithm. 

Disease Module 
Disease modelling relies heavily on the sets of incidence, mortality, survival, relative risk, and 
prevalence statistics. The microsimulation uses risk-dependent incidence statistics, and these are 
inferred from the relative risk statistics and the distribution of the risk factor within the population. In 
the simulation, individuals are assigned a risk factor trajectory giving their personal risk factor history 
for each year of their lives. Their probability of getting a particular risk factor-related disease in a 
particular year will depend on their risk factor state in that year. The necessary equations are given 
below. The microsimulation model has the ability to model discrete multiple stages of a disease.  
 
Once a person has a fatal disease (or diseases) their probability of survival will be controlled by a 
combination of the disease survival statistics and the probabilities of dying from other causes. Disease 
survival statistics are modelled as age- and gender-dependent exponential distributions.        

Relative Risks 
The reported incidence risks for any disease do not make reference to any underlying risk factor. The 
microsimulation requires this dependence to be manifested.  
 
The risk factor dependence of disease incidence must be inferred from the distribution of the risk 
factor in the population (here denoted as π ); suppose that α is a risk factor state of some risk factor Α and 
denote by pA(d|α,a,s) the incidence  probability for the disease d given the risk state, α, the person’s age, a, 
and gender, s. The relative risk ρA is defined by equation (1.35). 

   (1.35) 

where 0 is the zero-risk state. 
 
The incidence probabilities, as reported, can be expressed in terms of the equation: 
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   (1.36) 

 
Combining these equations allows the conditional incidence probabilities to be written in terms of 
known quantities: 

   (1.37) 

 
Previous to any series of Monte Carlo trials, the microsimulation programme pre-processes the set of 
diseases and stores the calibrated incidence statistics pA(d|0, a, s). For each scenario, the incidence 
statistics are calibrated against the baseline trends. 
 

Approximating Missing Data Points 
Published disease statistics are frequently incomplete and occasionally inconsistent. The 
microsimulation programme makes use of several supporting methods to check and, as necessary, to 
estimate missing disease statistics.  
 

Model Output Module 
Cross-sectional outputs (epidemiological and economic) per 100,000 of the population are computed 
for each year of the simulation. 
 
A range of different epidemiological outputs are produced by the model including: 
• incidence rates  
• cumulative incidence rates  
• prevalence rates 
• premature mortality   
• QALY 
• costs. 
 
Some of these outputs are standard and do not require further explanation. The QALY can be 
discounted if required and this can be defined by the user at the start of a modelling project. The 
discounting rate each year (Discount(year)) was calculated as shown in equation (1.38). 
 

   (1.38) 

Where yearstart refers to the start year of the modelling, which is 2020 in this study, and R is the 
annual discount rate. 
 

Confidence Intervals 
The confidence intervals (CIs) that accompany the sets of output data represent the accuracy of the 
microsimulation (stochastic or aleatoric uncertainty) as opposed to the confidence of the input data 
itself (parameter uncertainty). Errors around the input data were not available.  
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To estimate Monte Carlo error, we first calculate a variance for all estimates using the binomial 
variance formula 𝜎𝜎2 = 𝑛𝑛𝑝𝑝(1 − 𝑝𝑝), where 𝑛𝑛 is the total number of trials (individuals modelled in a 
given year), and 𝑝𝑝 is the proportion of individuals out of the total within the given group (e.g., risk 
factor group, disease group, demographic group, or a combination thereof). CIs were calculated by 
multiplying variance by 1.96 (2 decimal places). For downstream analyses, CIs were aggregated using 
the formula �∑ 𝐶𝐶𝐶𝐶𝑖𝑖𝑛𝑛

𝑖𝑖=1  (i.e., the square root of the sum of squared CIs). 
 



Appendix S4 Inside CKD Scientific Steering Committee 

Country/region Key external expert Affiliation 

Australia Prof. Steven Chadban Royal Prince Alfred Hospital, Sydney, Australia 

Belgium Prof. Michel Jadoul Cliniques Universitaires Saint-Luc, Université 
catholique de Louvain, Brussels, Belgium 

Brazil Prof. Marcelo Costa Batista  Hospital Israelita Albert Einstein, São Paulo, 
Brazil 

Canada Dr Navdeep Tangri University of Manitoba, Winnipeg, Canada 

China Prof. Guisen Li Sichuan Academy of Medical Sciences, Sichuan 
Provincial People’s Hospital, Chengdu, China 

Colombia Prof. José Javier Arango Álvarez Universidad del Quindío, Quindío, Colombia 

France Prof. Jean-Michel Halimi Service de Néphrologie-HTA, Dialyses, 
Transplantation Rénale, CHU Tours, Tours, 
France 

Germany  Prof. Kai-Uwe Eckardt  Department of Nephrology and Medical 
Intensive Care, Charité Universitätsmedizin 
Berlin, Berlin, Germany 

India  Prof. Vivekanand Jha George Institute for Global Health India, New 
Delhi, India 

Israel Prof. Avraham Karasik Maccabi Institute for Research and Innovation, 
Tel-Aviv, Israel 

Israel Prof. Gil Chernin Kaplan Medical Center, Faculty of Medicine, 
Hebrew University of Jerusalem, Jerusalem, 
Israel 

Italy Prof. Francesco Saverio Mennini 
 

CEIS-EEHTA, Faculty of Economics, 
University of Rome Tor Vergata, Rome, Italy 

Italy Prof. Luca De Nicola Department of Advanced Medical and Surgical 
Sciences, University of Campania Luigi 
Vanvitelli, Naples, Italy 

Japan Prof. Eiichiro Kanda  Kawasaki Medical University, Okayama, Japan 

Mexico Prof. José Ricardo Correa-Rotter Instituto Nacional de Ciencias Médicas y 
Nutrición Salvador Zubirán 
Mexico City, MEXICO  

Philippines, 
Singapore, and 
Thailand 

Assoc. Prof. Jason Choo Chon Jun 

 

Singapore General Hospital, Singapore 



Saudi Arabia 

 

Prof. Saeed M. G. Al-Ghamdi King Abdulaziz University Hospital and King 
Faisal Specialist Hospital and Research Centre, 
Jeddah, Saudi Arabia 

South Korea Prof. Kook-Hwan Oh Seoul National University College of Medicine, 
Seoul, South Korea 

Spain Prof. Juan Francisco Navarro-
González 

Research Unit and Nephrology Service, 
University Hospital Nuestra Señora de 
Candelaria, Santa Cruz de Tenerife, Spain 

Sweden Prof. Johan Ärnlöv Department of Neurobiology, Care Sciences and 
Society, Division of Family Medicine and 
Primary Care, Karolinska Institute, Stockholm, 
Sweden 

Taiwan Prof. Mai-Szu Wu Division of Nephrology, Taipei Medical 
University, Taipei, Taiwan 

Turkey Prof. Mustafa ARICI Hacettepe University Faculty of Medicine, 
Department of Nephrology, Ankara, Turkey 

United Arab 
Emirates 

Prof. Stephen Holt SEHA Kidney Care, Abu Dhabi, UAE 

United Kingdom Dr Albert Power North Bristol NHS Trust, Bristol, UK 

United States of 
America 

Prof. Glenn Chertow Stanford University School of Medicine, 
California, USA 

United States of 
America 

Prof. Jay Wish Indiana University School of Medicine, 
Indianapolis, USA 

 

CKD chronic kidney disease, NHS National Health Service 
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