
 

ESM METHODS 

 

Human studies – type 2 diabetes patients and controls 

Subjects were between 40 and 70 years old and individuals with type 2 diabetes were 

treated according to national guidelines. All participants with type 2 diabetes had poor 

glycaemic control while on oral glucose-lowering agents and diet (79% of the individuals with 

type 2 diabetes wereusing Metformin; 69% using Sulfonylureas). Blood was taken after an 

overnight fast, just before the start of insulin treatment in the participants with type 2 

diabetes. Control participants were recruited through advertisements in local newspapers. 

Subjects characteristics are listed in Supplementary Table S1. Exclusion criteria were other 

types of diabetes, significant cardiovascular, renal, liver or other co-morbidity, use of 

corticosteroids, uncontrolled endocrine disorders (stable supplementation with thyroid 

hormone was allowed), bariatric treatment, excessive alcohol consumption (>20 g/day), drug 

abuse, and use of thiazolidinedione derivatives. 

 

Sucnr1−/− mice 

To generate the Sucnr1+/−  mice, an IRES/lacZ/neo cassette was inserted to delete a large 

part of exon 2, by homologous recombination. See ESM Fig. 1 for further details. The 

animals were intercrossed to yield homozygous wild-type (WT) and Sucnr1−/− offspring as 

determined by Sucnr1 genotyping using the primers TL23-F1: 

GCTGTCTGGGCCTTAGTGACC, TL-23-R1: GCTGCCTTCTGATTCATGTGG, Neo3a: 

GCAGCGCATCGCCTTCTATC.  

 

Isolation and culture of obese vs lean white adipose tissue explants 

Mouse epididymal adipose tissue was freshly isolated from obese mice as well as age-

matched lean control mice. Obese mice received high fat diet (HFD) containing 45% energy 

derived from fat (58V8 Test Diet, St Louis, USA) + 1% cholesterol (Dishman, Veenendaal, 

Netherlands) and 20% fructose (wt/vol) in the drinking water for 18 weeks. Lean mice were 



 

age-matched chow fed mice. 0.2 g of tissue was directly brought into culture in 1 ml DMEM 

containing 1 mmol/l glucose for 24 hours. 

 

Macrophage and adipose tissue co-culture 

Bone marrow-derived macrophages (BMDMs) were obtained from C57Bl/6 mice and 

differentiated for 3 days in DMEM with 10% serum, supplemented with 5% L929 conditioned 

medium. BMDMs were subsequently plated in 24-wells plates and exposed to a transwell 

chamber (0.4 µm Corning) containing 50 mg adipose tissue explants (BMDMs with adipose 

tissue) or an empty transwell chamber (BMDMs without adipose tissue) for another 3 days. 

BMDMs were subsequently scraped for isolation of RNA and RT-qPCR analysis. 

 

Morphologic analysis of adipose tissue and quantification of macrophage number 

Hematoxylin and eosin (H&E) staining of sections followed standard protocols on 5 µm-thick 

sections of white adipose tissue. Morphometric analysis of individual fat cells was done using 

digital image analysis software. For this, microscopic images were digitized in 24 bit RGB 

(specimen level pixel size 1.28 × 1.28 um2) and recognition of fat cells was performed by 

applying a region-growing algorithm on manually indicated seed points. To quantify 

macrophage numbers in epididymal white adipose tissue, sections were 

immunohistochemically stained using a rat anti-mouse F4/80 antibody (Serotec, Düsseldorf, 

Germany) followed by a biotinylated rabbit anti-rat antibody and an avidin-biotin-complex 

(ABC) coupled to peroxidase (Vector Labs, Brunschwig Chemie, Amsterdam, the 

Netherlands). Visualization of the complex was done using 3,3’-diaminobenzidene for 5 min. 

With negative controls, primary antibodies were omitted. Macrophages and crown-like 

structures were counted with a microscope at a magnification of 200x, 10 images per tissue 

per mouse and expressed per number of adipocytes that were counted in the same image 

(N=3). 

 

Succinate measurements 



 

Reagent solutions were dissolved according to the kit’s protocol. Standard curve and 1:5 

diluted plasma samples (100 μl) were measured in duplicate in 96 wells plates. A standard 

curve was generated with the following molarities of succinate: 0-10-20-40-80-120-160-200 

μM. Samples were added to a non-enzyme control plate and an enzymatic assay plate. A 

reaction mix of 33.6 μl per well (10 μl of solution 1, 2 and 3, 1 μl of solution 4, and 2.6 μl of 20 

mmol/l Tris pH 7.4) was prepared and added to the sample. Next, 20 μl of a mixture of 5 μl 

solution 1, 14 μl mQ water and either 1 μl solution 5 or 1 μl mQ was added per well. Abs340 

was read every 5 minutes in a plate reader (Biorad Benchmark Plus) until values stabilized. 

Data was processed by subtracting the abs340 of the enzyme-treated samples from the 

abs340 of the negative control plate and succinate concentrations were calculated by 

applying the Δabs340 value in the standard curve. 

 

1H NMR spectroscopy  

One-dimensional 1H NMR spectroscopy was performed to investigate the concentration of 

succinate in the medium from samples. For this, the medium was filtered through a 10 kDa 

filter, the volume adjusted to 700 μl with water, and pH adjusted to 2.5 using 3M HCl, after 

which 20 μl of 20.2 mmol/l sodium 3-trimethylsilyl- 2,2,3,3-tetradeuteropropionate (TSP; 

Aldrich) in D2O (Catalogue No. 435 767; Aldrich) was added. The samples were then placed 

in 5-mm NMR tubes and 1H NMR spectra were obtained using a Bruker 500 MHz 

spectrometer (pulse angle, 90°; delay time, 4 s; number of scans, 256). Water resonance 

was suppressed by gated irradiation centered on the water frequency. The spectral width in 

the F1 and F2 domains were 5500 Hz. A total of 2K data points were collected in t2, 256 t1 

increments with 32 transient per increment were used. The relaxation delay was set to 2 

seconds. Before the Fourier transformation, a sine-bell function was applied in both time 

domains. During the relaxation delay, the water resonance was presaturated.  

The free-induction decays measured for these samples were processed using Topspin 

software (Bruker, Billerica, Massachusetts, USA). Fourier transformation was applied on the 

free-induction decay of the samples and the resulting spectra were phase and baseline 



 

corrected. The chemical shifts in the spectra were referenced to the internal standard, TSP. 

Assignment of peak positions for compound identification was performed by comparing the 

peak positions in the spectra of the metabolites with the reference spectral database of 

model compounds at pH, 2.5 using Amix version 3.9.14 (Bruker Bio-spin). Quantification of 

identified compounds was performed by manual integration of chosen peak(s) for a specific 

metabolite.  

 

In vitro cytokine production 

Peritoneal macrophages were isolated from mice by injecting 5 ml of ice-cold sterile PBS (pH 

7.4) into the peritoneal cavity. After centrifugation and washing, cells were resuspended in 

RPMI 1640 culture medium containing 1 mmol/l pyruvate, 2 mmol/l L-glutamine, and 50 

mg/liter gentamicin. Cells were counted using a Z1 Coulter particle counter (Beckman 

Coulter; Woerden, The Netherlands) and cultured in 96-well round-bottom microtiter plates 

(Costar, Corning, The Netherlands) at 1 × 105 cells/well in a final volume of 200 μl. After 24 h 

of incubation with LPS (10 ng/mL) at 37°C and 5% CO2, the plates were centrifuged at 1,400 

× g for 8 min, and the supernatants were collected and stored at −80°C until cytokine assays 

were performed. 

Mouse bone marrow-derived macrophages (BMDMs) were differentiated for 7 days in DMEM 

with 10% serum supplemented with 30% L929 conditioned medium. 2 × 105 cells/well  were 

subsequently stimulated in 96-well flat-bottom microtiter plates with various concentrations of 

succinate (0-30-300-3000 µmol/l) in the presence or absence of LPS (1 ng/ml).  

The concentrations of mouse tumor necrosis factor alpha (TNF-α) and IL-1β were 

determined by specific radioimmunoassay (RIA). Interleukin-6 (IL-6) and keratinocyt-derived 

chemokine (KC) were measured using mouse IL-6 and KC ELISA kits (R&D Systems, MN, 

USA) according to the instructions of the manufacturer. 

 

Transwell chemotaxis assay 



 

(BMDMs were obtained from 3-4 month old mice and differentiated for 7 days in DMEM with 

10% (vol/vol) serum, supplemented with 30% (vol/vol) L929 conditioned medium. BMDM 

migration assays were performed using 8.0 µm pore-size 24-well Transwell chambers (BD 

Biosciences). BMDMs (2 x 10^5 cells/well) were placed in the upper chamber and medium 

containing the chemoattractant was added in the lower chamber, all diluted in DMEM 

supplemented with 0.1% (wt/vol) BSA. Chemoattractants used were 1) various 

concentrations of succinate 2) various concentrations of medium derived from hypoxic and 

apoptotic 3T3-L1 adipocytes and 3) 10% zymosan activated serum (ZAS) (wt/vol) as a 

positive control. For the hypoxic/apoptotic 3T3-L1 cell medium, mouse 3T3-L1 cells were 

cultured and differentiated towards adipocytes as described [1] and subsequently incubated 

for 24h at 1% O2 or exposure to 200 mJ UV radiation to induce hypoxia or apoptosis, 

respectively. For the chemoattractant solution, supernatant of the hypoxic and apoptotic 

adipocytes was mixed in a 1:3 vol/vol ratio. To generate the ZAS, 5% zymosan (wt/vol) was 

incubated in serum for 30 min at 37°C, centrifuged and 10x diluted in DMEM supplemented 

with 0.1% (wt/vol) BSA. After 8 hours of migration, membranes were fixed with 4% formalin 

and stained with hematoxylin. Non-migrating cells were removed from the upper surface 

using a cotton swab. Membranes were mounted on microscope slides and the number of 

migrated cells on the lower surface was determined in 15-20 representative fields (400x 

magnification). Four to six separate membranes were analyzed for each condition.  

 

 

RNA isolation and RT-qPCR analysis.  

Total RNA was isolated from adipose tissue using TRIzol (Invitrogen, Carlsbad, CA), 

according to manufacturer’s instructions. RNA was reverse-transcribed (iScript cDNA 

Synthesis Kit, Bio-Rad Laboratories). The following qPCR was performed using power SYBR 

green master mix (Applied Biosystems, Foster City, CA) using the StepOne Real-Time PCR 

System (Applied Biosystems, Foster City, CA). For mice samples, we used 36B4 and 

cyclophillin as housekeeping genes to normalize the mRNA quantities. For human samples, 



 

we used beta-2-microglobulin (B2M) as a housekeeping gene. Specific primer sequences 

used are listed in Supplemantary Table S2. 

 

Microarray analysis.  

Epididymal adipose tissue samples from low fat diet (LFD)-fed WT and Sucnr1−/− animals 

(n=4 per genotype) were subjected to genome-wide expression profiling. In brief, total RNA 

was isolated from adipose tissue samples and integrity was confirmed using a Bio-analyzer 

(Agilent). Subsequently, RNA was hybridized on Affymetrix Mouse Gene 1.1 ST arrays 

(Affymetrix, Santa Clara, CA). Packages from the Bioconductor project [2], integrated in an 

online pipeline [3], were used for quality control and statistical analysis of the array data. 

Probe sets were first redefined utilizing current genome annotation information [4]. Probes 

were reorganized based on the gene definitions available in the GRCm38.p2 mouse genome 

assembly released by the Genome Reference Consortium (remapped CDF v18). Normalized 

gene expression estimates were obtained using the robust multi-array analysis (RMA) pre-

processing algorithm available in the library ‘AffyPLM’ using default settings [5]. The dataset 

was filtered to only include probe sets that were active (i.e. expressed) in at least 4 samples 

using the universal expression code (UPC) approach (UPC score > 0.50) [6]. This resulted in 

the inclusion of 8,348 (39%) of the 21,266 probe sets. Differentially expressed probe sets 

were identified by using linear models and an intensity-based moderated t-statistic [7, 8]. 

Probe sets that satisfied the criterion of P<0.05 were considered to be significantly regulated. 

Array data have been submitted to the Gene Expression Omnibus under accession number 

GSE64104. Detailed information on microarray processing and data analysis is available 

upon request. 

 

Biological interpretation of array data 

Changes in gene expression were related to biologically meaningful changes using gene set 

enrichment analysis (GSEA) [9]. It is well accepted that GSEA has multiple advantages over 

analyses performed on the level of individual genes [9-11]. Gene sets were retrieved from 



 

the expert-curated KEGG, Biocarta, Reactome and WikiPathways pathway databases. Only 

gene sets consisting of more than 15 and fewer than 500 genes were taken into account. 

Genes were ranked on their t-value that was calculated by the moderated t-test. Statistical 

significance of GSEA results was determined using 1,000 permutations. The Enrichment 

Map plugin for Cytoscape was used for visualization and interpretation of the GSEA results 

[12]. 
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ESM TABLE 1: Descriptive characteristics of study type 2 diabetes patients (T2D) and 

controls (CON) 

 

 T2D patients Controls P-value 

N 45 72  

Age (yr) 60.3 ± 1.6 54.2 ± 1.0 0.0007 *** 

Gender (female %) 44 54  

Duration diabetes (yr) 7.9 ± 0.9 -  

BMI (kg2/m2) 30.3 ± 0.8 27.6 ± 0.6 0.008** 

WHR 1.02 ± 0.01 0.94 ± 0.01 <0.0001*** 

Fasting glucose 

(mmol/l) 

11.6 ± 0.5 5.1 ± 0.1 <0.0001*** 

HbA1c (%) 8.7 ± 0.2 -  

TC (mmol/l) 4.2 ± 0.2 4.6 ±0.2 0.06 

TG (mmol/l) 2.1 ± 0.2 1.2 ± 0.1 0.0002*** 

HDL (mmol/l) 1.1 ± 0.0 1.2 ± 0.1 0.06  

LDL (mmol/l) 2.3 ± 0.2 3.0 ± 0.1 0.003** 

 

Data are mean ± sem. BMI, body mass index; WHR, waist to hip ratio; HbA1c, glycated 

haemoglobin; TC, total cholesterol; TG, triacylglycerides; HDL high-density lipoprotein 

cholesterol; LDL low density lipoprotein cholesterol 



 

ESM TABLE 2: Primers used for quantitative real-time PCR analysis  

 

Gene Forward primer Reverse primer 

   

Human   

B2M ATGAGTATGCCTGCCGTGTG CCAAATGCGGCATCTTCAAAC 

SUCNR1 TGTGTCTAACACTGTTGGGGTTCC TCCTCACATTCCGCATGACG 

Mouse   

36B4 AGCGCGTCCTGGCATTGTGTGG GGGCAGCAGTGGTGGCAGCAGC 

Casp1 GGGACCCTCAAGTTTTGCC GACGTGTACGAGTGGTTGTATT 

Ccr1 TGGGTGAACGGTTCTGGAAG GGTCCTTTCTAGTTGGTCCACA 

Ccr5 ATGGATTTTCAAGGGTCAGTTCC CTGAGCCGCAATTTGTTTCAC 

Cd68 CCAATTCAGGGTGGAAGAAA CTCGGGCTCTGATGTAGGTC 

Cd74 AGATGCGGATGGCTACTCC TCATGTTGCCGTACTTGGTAAC 

Cd80 TGCTGCTGATTCGTCTTTCAC GAGGAGAGTTGTAACGGCAAG 

Cd86 GAGCTGGTAGTATTTTGGCAGG GGCCCAGGTACTTGGCATT 

Cxcr4 GACTGGCATAGTCGGCAATG AGAAGGGGAGTGTGATGACAAA 

Cyclophillin TGTCTTTGGAACTTTGTCTGCAA CAGACGCCACTGTCGCTTT 

F4/80 CTTTGGCTATGGGCTTCCAGTC GCAAGGAGGACAGAGTTTATCGTG 

IL-1ra AAATCTGCTGGGGACCCTAC TGAGCTGGTTGTTTCTCAGG 

iNOS CGTTTCGGGATCTGAATGTGA GGGCAGCCTGTGAGACCTT 

Mrc1 CTCTGTTCAGCTATTGGACGC CGGAATTTCTGGGATTCAGCTTC 

Sucnr1 GGACCTATGGAGATGTTCTCTG GGTAGAACTTCTAAGGTCACTAAG 

Tnfa CAGACCCTCACACTCAGATCATCT CCTCCACTTGGTGGTTTGCTA 

 



 

ESM TABLE 3: Pearson correlation coefficients between subject characteristics and 

plasma succinate levels in type 2 diabetes (T2D) patients and controls 

 

 

Variable T2D patients (N=45) Controls (N=72) 

 R p-value R p-value 

Age (yr) 0.006 0.96 0.004 0.98 

BMI -0.065 0.59 -0.124 0.42 

WHR -0.049 0.69 -0.092 0.55 

Fasting glucose (mmol/l) 0.176 0.14 0.165 0.28 

HbA1c (%) -0.06 0.96   

TC (mmol/l) 0.026 0.84 0.133 0.38 

TG (mmol/l) -0.182 0.15 -0.147 0.34 

HDL (mmol/l) -0.079 0.53 0.187 0.22 

LDL (mmol/l) 0.126 0.32 0.110 0.49 

 

Data are mean ± sem. BMI, body mass index; WHR, waist hip ratio; HbA1c, glycosylated 

haemoglobin, TC, total cholesterol, TG, triacylglycerides, HDL high-density lipoprotein 

cholesterol, LDL low density lipoprotein cholesterol 

 



 

ESM Figure 1 

 

ESM Fig. 1 The SUCNR1 gene locus of the Sucnr1-knockout mouse  

[A] Schematic map of the gpr91/SUCNR1 wild-type (WT) locus: promoter (grey bar), 

untranslated regions (UTRs; white bars), intron (line) and coding sequence (CDS; black bars) 

are indicated. The IRES/lacZ/neo cassette was inserted to delete a large part of exon 2, by 

homologous recombination. Arrows and letters indicate primers used for confirmation of the 

genotype. [B] primers and their sequences used for genetic analysis. [C] Different 

combinations of primers (a+b and c+d+e) were used to establish the presence of exon 1 and 

the deletion of the CDS in Sucnr1−/− mice. Agarose gel electrophoresis of PCR results 

confirmed the presence of the expected bands. For each PCR reaction water was used as 

negative control (NC).  

 

  

 

 

 

 

 



 

ESM Figure 2 

 

ESM Fig. 2. Succinate release from obese adipose tissue and SUCNR1 expression in 

murine and human macrophages 

[a] Succinate release from mouse adipose tissue explants derived from obese versus lean 

mice. Explants were cultured ex vivo in 1mmol/l glucose medium. [b-e] SUCNR1 mRNA 

expression was evaluated in publically available microarray data sets comparing M1 versus 

M2 macrophages from human (GSE5099) and mouse (GSE69607) origin. [b] Mouse bone 

marrow derived M0 macrophages (medium control); M1 macrophages (LPS + IFNγ 

stimulated, 100ng/mL and 20ng/mL respectively) and M2 macrophages (IL-4 stimulated, 20 

ng/mL) (n=2-3). [c] Human M1 macrophages (LPS + IFNγ stimulated, 100ng/mL and 

20ng/mL respectively) versus M2 macrophages (IL-4 stimulated, 20 ng/mL) [d] Human 

monocytes and differentiated macrophages using autologous serum (n=3). [e] Mouse bone 

marrow derived macrophages exposed to adipose tissue (AT) explants from lean and obese 

mice. Data are fold change as compared to control. Data from [e] are tested using a 1-way 

ANOVA Kruskal-Wallis test. Data are mean ± SEM from n=4 replicates. *p<0.05, ** P<0.01.  



 

ESM Figure 3 

 

 

 

ESM Fig. 3. Absence of SUCNR1 reduces inflammatory pathways within adipose 

tissue Enrichment map showing differentially-regulated pathways in adipose tissue of 

Sucnr1−/− as compared to wildtype (WT) mice. GSEA was performed to identify functional 

gene sets, i.e. metabolic pathways or signaling transduction routes, that were changed in 

Sucnr1−/− mice (p<0.001, FDR<0.25). Nodes represent gene sets, and edges between nodes 

represent their similarity. A red node indicates induction of a gene set, and a blue node 

indicates suppression of a gene set in Sucnr1−/− compared to WT. Node size represents the 

gene set size, and edge thickness represents the degree of overlap between 2 connected 

gene sets. Gene sets were grouped by cluster analysis, applying the Markov Cluster 

Algorithm, which were semi-automatically annotated and manually labeled to highlight the 

prevalent biologic functions among the related gene sets.  
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ESM Figure 4 

 

 

ESM Fig. 4. Absence of SUCNR1 does not affect adipose tissue weight or adipocyte 

size. 

Sucnr1−/− and wildtype (WT) mice were subjected to a LFD or HFD feeding for 16 weeks. [a] 

Adipose tissue weight after 16 weeks of LFD or HFD feeding. [b] Average adipocyte size 

distribution of epididymal adipose tissue. Data are mean ± SEM from n=7 animals per group. 

*p<0.05, ** P<0.01. 
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ESM Fig. 5. Absence of SUCNR1 does not affect macrophage infiltration after 8 weeks 

of high fat diet (HFD) feeding. Relative mRNA levels of [a] F4/80 and [b] Cd68 in 

epididymal white adipose tissue of Sucnr1−/− and wild type (WT) mice after low fat diet (LFD) 

or high fat diet (HFD) feeding for 8 weeks. mRNA levels of WT mice fed a LFD are set to 1. 

Data are fold change as compared to WT LFD. Data are mean ± SEM from n=5-7 animals 

per group. 
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ESM Fig. 6. Absence of SUCNR1 does not affect macrophage cytokine or chemokine 

secretion. 

Peritoneal cells were isolated from Sucnr1−/− (black bars) and wildtype (WT) mice (white 

bars) and incubated with or without LPS (10 ng/ml) for 24h. Intracellular levels of IL-1β [a] as 

well as secretion of IL-6 [b] and TNFα [c] were deteremined. Bone-marrow derived 

macrophages were incubated with succinate with or without LPS (1ng/ml) and levels of KC 

were determined [d]. Data are mean ± SEM; n=4-7 mice.  
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ESM Fig. 7. Absence of SUCNR1 does not affect (anti)-inflammatory macrophage 

phenotype after high fat diet (HFD) feeding. Relative mRNA levels of [a] Caspase-1, [b] 

TNFα, [c] Cd86, [d] Cd80, [e] iNOS, [f] Mrc1, [g] IL-1ra in epididymal white adipose tissue of 

Sucnr1−/− and wild type (WT) mice after low fat diet (LFD) or high fat diet (HFD) feeding for 16 

weeks. Data are fold change as compared to WT LFD. Data are mean ± SEM from n=6-7 

animals per group. *p<0.05, ** P<0.01, *** P<0.001 
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ESM Figure 8. Succinate is released from apoptotic and hypoxic 3T3 adipocytes.  

Pooled medium was used for determination of succinate using 1H NMR spectroscopy. Mean 

succinate levels are shown for control medium (DMEM/10% serum/1%pen/strep), medium 

derived from healthy 3T3 adipocytes, apoptotic adipocytes and hypoxic adipocytes.   
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ESM Figure 9. Expression of chemokines receptors in BMDMs and adipose tissue of 

Sucnr1−/− and wild type (WT) mice. [a] Relative mRNA levels of Ccr1, Ccr5, Cxcr4 and 

Cd74 in bone marrow derived macrophages (BMDMs) of Sucnr1-/- and wild type (WT) mice. 

Relative mRNA levels of [b] Ccr1, [c] Ccr5, [d] Cxcr4, [e] Cd74 in epididymal white adipose 

tissue of Sucnr1-/- and wild type (WT) mice after low fat diet (LFD) or high fat diet (HFD) 

feeding for 16 weeks. Data are fold change as compared to WT LFD. Data are mean ± SEM 

from n=6-7 animals per group. 


