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ESM Methods 

Study Participants 

 
Durban Diabetes Study (DDS)  

The Durban Diabetes Study (DDS) was a population-based cross-sectional study, using 

multistage cluster sampling of non-pregnant urban black African individuals aged >18 years, 

of Zulu descent and residing in the city of Durban in KwaZulu-Natal (South Africa), 

conducted between November 2013 and December 2014. A detailed description of the survey 

design and procedures has been previously published [1, 2]. In brief, all consenting 

participants had anthropometric, demographic and biochemical measurements including a 

75g OGTT using 1998 WHO criteria for disorders of glycaemia; whole blood was collected 

for DNA extraction. T2D cases were identified if they were ≥ 18 years old and had HbA1c > 

6.5%, fasting plasma glucose ≥ 7.0 mmol/L, 2 hour plasma glucose ≥ 11.1 mmol/L, had been 

told by a doctor or health professional they had diabetes or were currently receiving insulin 

for diabetes. This analysis includes data on 1,104 participants (128 type 2 diabetes and 976 

controls), on whom complete information was available. 

 

Durban Diabetes Case Control study (DCC)  

Subjects enrolled in the Durban Diabetes Case Control study (DCC) were all South African 

Zulu. All had a diagnosis of type 2 diabetes (based on WHO 1998 criteria) and were 

attending a diabetes clinic at either Inkosi Albert Luthuli Central Hospital or one of 3 

peripheral clinics. Information relating to the diagnosis and treatment of diabetes, family 

history and lifestyle factors was obtained from each patient. Body weight was measured in 

light clothing on an electronic scale and blood pressure was measured in a seated position 

with an automated sphygmomanometer. 

 



The cohort included 1,599 subjects with type 2 diabetes, of whom 1,214 (75.9%) were 

women. A family history of diabetes was present in 638 (40%) and of these, a maternal 

history was present more often (69.9%), than paternal (19.6%). The mean age was 56.4 ± 8.9 

years, the mean age at diagnosis of diabetes was 49.8 ± 9 years and the mean duration of 

diabetes was 6.61 ± 6.74 years. The mean body mass index was 34.4 ± 7.1 kg/m
2
 and 

hypertension was present in 1,338 (83.7%) subjects. The commonest macrovascular 

complication was cerebrovascular disease (3.7%) and the most frequently reported 

microvascular complication was retinopathy (23%).  

DNA was extracted from EDTA-anticoagulated peripheral venous blood with a commercial 

kit (Nucleon BACC Genomic DNA Extraction Kits, GE Healthcare).  

 

The Africa America Diabetes Mellitus (AADM) 

The Africa America Diabetes Mellitus (AADM) study comprised individuals from sub-

Saharan Africa (SSA), enrolled from university medical centres in Nigeria, Ghana, and 

Kenya. T2D was defined using the American Diabetes Association (ADA) criteria, or if an 

individual was receiving treatment for T2D. Probable cases of type 1 diabetes were excluded 

and controls had no suggestive evidence of diabetes based on fasting glucose/2hr 

glucose/symptoms of suggestive diabetes. 

 

Genotyping, quality control and imputation 

 

In total, 2,707 African individuals of Zulu descent (2,003 females and 704 males) were 

genotyped using the customized Illumina Multi-Ethnic Genotyping Array (MEGA) (Illumina, 

Illumina Way, San Diego, CA, US www.illumina.com/science/consortia/human-

consortia/multi-ethnic-genotyping-consortium.html). Following genotyping, variants were 

called using Illumina’s GenCall method with the default clustering file. All samples were 



typed across 22 SNPs on the Sequenom® (Sequenom® Inc. California, USA) for sample 

quality control (QC genotypes). Samples were removed if they had genotype identity 

concordance with the QC genotypes <0.9, call rate <0.97, heterozygosity rate >4 standard 

deviations from the mean, discordance between originally provided and inferred genders or 

identity by descent π > 0.9 with another sample (the sample with lowest call rate was 

removed from each related pair). Variants were removed if they had low call rate (<0.99 for 

variants with minor allele frequency (MAF) <0.05 or <0.97 for variants with MAF≥0.05), 

significantly different missing rates between cases and controls (p<1×10
-6

) or significant 

deviation from Hardy-Weinberg equilibrium (HWE) (exact test p <1×10
-6

).  

 

The AADM samples were genotyped on the Affymetrix Axiom® PANAFR SNP array as 

described previously [3]. Genotype calling was performed using the Affymetrix® 

Genotyping Console™ Software (GTC) and following the manufacturer’s best practices 

guidelines. Only samples with call rate >= 0.95 and heterozygosity < 4SD from the mean 

were included. AADM samples were excluded if they were duplicated, sex-discordant or 

showed cryptic relatedness with other individuals [3]. SNPs were filtered if they had call rate 

≤95, HWE exact test (p <1×10
-6

) and MAF<0.01[3]. 

 

Imputation was performed using a merged panel in which the 1000 Genomes phase 3 

panel[4] (release 20130502) was combined with 2,298 African samples with sequence data 

from the African Genome Variation Project (AGVP)
2
 and the Uganda 2,000 Genomes Project 

(UG2G) (http://www.ashg.org/2014meeting/abstracts/fulltext/f140122667.htm) following a 

comparison with the 1000 Genomes phase 3 panel alone[5]. In the combined Zulu sample, all 

variants passing QC were flipped to the positive strand of the reference genome (build 37). 

Variants overlapping those in the imputation panel with MAF>0.01 (but less than 0.4 for A/T 



or G/C variants) and difference in frequency <0.2 between the genotyped variant and the 

imputation panel were prephased using SHAPEITv2 [6] (Oxford University, Oxford, UK 

www.well.ox.ac.uk/~gav/resources/snptest_v2.5.2_linux_x86_64_dynamic.tgz) and imputed 

with IMPUTE2 [7]. The AADM samples were imputed to the same merged panel using the 

Sanger imputation server (https://imputation.sanger.ac.uk/). Following imputation, an 

updated reference panel was released (the African Genome Resources (AGR) panel available 

on the Sanger imputation server). We retained all imputed SNPs also in the AGR panel with 

MAF>1% and imputation information score>0.4. 

 

Meta-analysis, signal selection and fine-mapping 

 
Meta-analysis of the Zulu and AADM summary statistics for shared variants was performed 

using a fixed-effects meta-analysis (weighted for effective sample size) in METAL [8]. 

Results for each cohort were corrected using the genomic control inflation factor, λGC [9]: 

Zulu λGC = 1.008, AADM λGC = 1.019. The meta-analysis results were further corrected for a 

second round of genomic control (λGC = 1.006). Meta-analysis odds ratios (OR) were 

estimated by performing a fixed-effect inverse variance meta-analysis in METAL, using an 

approximation of the Zulu allelic logeOR and variance from the allelic effect estimate from 

the mixed linear regression model [10, 11]. To identify distinct signals of association, we 

performed approximate conditional analyses using the joint model implemented in GCTA 

[12, 13]. LD was estimated from 2,959 African reference samples included in the merged 

panel. We included any variant with MAF>1% in both studies and applied the default values 

to other parameters of GCTA (p-value threshold = 1×10
-5

). Finally, variants with p < 2.5x10
-8

 

in the joint model were selected as signals with genome-wide significance[14]. 

 

https://imputation.sanger.ac.uk/)


The Bayesian fine-mapping method FINEMAP [15] (Christian Benner, Helsinki, Finland 

www.christianbenner.com/finemap_v1.1_x86_64.tgz) was utilized to identify likely causal 

SNPs within 500kb either side of the most significant variant at each locus. Summary 

statistics (z-scores) from the sample size weighted meta-analysis of variants present in both 

Zulu and AADM and the pairwise Pearson correlations of variants from the African samples 

in the merged panel at each locus were supplied as input to FINEMAP. At each locus we ran 

FINEMAP assuming up to 5 causal variants (the default). We then iteratively ran FINEMAP 

setting the maximum number of causal variants to the number of causal variants supported by 

the Bayes’ factor from the previous run until the number of causal variants converged. 

FINEMAP calculates the posterior probabilities of each variant being causal and proposes the 

most likely configurations of causal variants. We constructed 99% credible sets by including 

variants in the top configurations whose posterior probabilities summed to just over 99%. For 

comparison, we also performed the fine-mapping in each region using the approximate 

Bayes’ factor approach [16, 17] with allelic effect estimates from the inverse variance meta-

analysis assuming up to one causal variant without conditional analyses. We similarly 

performed finemapping in Europeans using the results from DIAGRAM [18] with 5,000 

randomly selected samples from UK Biobank to estimate LD between variants. 

 

Comparison with established loci 

 

We used “direct” and “local” detection to explore the extent to which existing GWAS signals 

(almost all from non-African samples) were detected in the African GWAS. We used 

GARFIELD [19] to test for an enrichment of variants with p-value < 0.05 in the 100 

previously established T2D signals (ESM Methods, ESM Table 2) compared to all other 

variants with p<0.05 in the African T2D meta-analysis. We generated annotation files for 

each variant in the African GWAS as input for GARFIELD: (i) genome-wide coordinates and 



p-values for association with T2D from the African meta-analysis, (ii)  African specific LD 

tag files (r2=0.1 and r2=0.8 within 1 Mb, estimated from the merged panel), (iii) minor allele 

frequencies from the African meta-analysis and distance to nearest transcription start site as 

supplied in GARFIELD (GRCh37) (iv) a file annotating each of the variants in the African 

meta-analysis as 1 if they were an established T2D variant (or their proxy, ESM Methods, 

ESM Table 2), and 0 otherwise.  

In a “direct” comparison, we tested index variants at previously-reported T2D GWAS (taking 

p<0.05, and directional consistency, as evidence of detection in our data). At loci detected 

using this “direct” approach, we examined association profiles in the African data to ensure 

that the association at the index variant did not reflect LD with a stronger signal elsewhere in 

the region.  

We also considered the evidence for “local” detection. These analyses aimed to detect locus-

level replication which did not involve the same index variant (reflecting allelic heterogeneity 

or haplotypic diversity). For these “local” analyses, an association signal was deemed to have 

been replicated if at least one variant within the 200kb region flanking the previously-

reported index variant (100kb either side) reached nominal significance threshold (p<0.05) 

after correcting for the effective number of independent tests (N_eff). N_eff was estimated 

using the software GEC as previously reported [20]: this test was well-calibrated in null data 

analyses (data not shown). 

We performed genetic risk score (GRS) analyses to harvest association information from 

multiple variants. In both the AADM and Zulu samples, T2D association was tested by 

logistic regression adjusting for age, sex, and the first three principal components (PC) in 

unrelated individuals (in the Zulu samples, we performed an additional step to remove 

individuals with higher missing rate in each first-degree relative pair, 0.3). GRS were 



calculated as the total number of risk alleles in subsets of the 102 variants at established loci 

from existing GWAS studies of T2D (published before February 2018), primarily in 

populations of European and Asian ancestry (ESM Table 2). 

 

Testing association of INS-VNTR with type 2 diabetes 

 
We used the haplotypic information for INS-VNTR generated in African-descent individuals 

by Stead et. al. (2003)[21] to impute INS-VNTR lineages in the Zulu and AADM samples. 

We used SHAPEITv2 [6] and IMPUTE2 [7] to phase and construct haplotypes and identify 

the INS-VNTR lineages and tested each for association with T2D. Of the 56 variants reported 

by Stead et. al. (2003) [21], 45 had positions in build 37 of which 43 were available in the 

Zulu and AADM samples. Each lineage was tested for association with T2D using a linear 

mixed model, implemented in GEMMA[22], adjusting for sex, age, and BMI (Zulu) or using 

a logistic model in R adjusting for age, sex, BMI and the first 3 PCs (AADM). Meta-analysis 

of the Zulu and AADM results was performed using an inverse variance fixed-effects meta-

analysis (with an approximation of the allelic logeOR and variance from the linear model in 

the Zulu sample[10]). Conditional analysis was performed to detect distinct association 

signals by inclusion of dosages of the lead T2D variants as covariates in the regression 

model.  
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ESM Figures 

ESM Fig. 1. Locuszoom plot of locus TCF7L2 with fine-mapping configurations. The top 

panel shows the Locuszoom [23] plot of the 1Mb TCF7L2 region spanning the lead SNP 

rs7903146. LocusZoom finds which of the reference SNPs (with symbols in red and blue) 

each variant in the region is in highest LD with, and colours each variant with a shade of red 

or blue to represent the LD between them and their matched reference SNP. The bottom 

panel shows the top five configurations from FINEMAP assuming there were up to five 

causal variants with the top configuration marked in yellow. The length of each rectangle 

represents the posterior probability of each configuration, shown on the left, and the rsIDs on 

the right are the variants within each configuration. 

  



ESM Fig. 2. Locuszoom plot of locus AGMO with fine-mapping configurations. The top 

panel shows the Locuszoom [23] plot of the 1Mb AGMO region spanning the lead SNP 

rs73284431. LocusZoom finds which of the reference SNPs (with symbols in red and blue) 

each variant in the region is in highest LD with, and colours each variant with a shade of red 

or blue to represent the LD between them and their matched reference SNP. The bottom 

panel shows the top five configurations from FINEMAP assuming there were up to five 

causal variants with the top configuration marked in yellow. The length of each rectangle 

represents the posterior probability of each configuration, shown on the left, and the rsIDs on 

the right are the variants within each configuration. 

 

  



ESM Tables (see the separate file) 

ESM Table 1. Sample characteristics of the Zulu and AADM samples included in the meta-

analysis. 

ESM Table 2. Direct and local detection of established loci. 

ESM Table 3. T2D susceptibility loci with combined Zulu and AADM meta-analysis with 

2.5x10
-8

≤ p-value < 1x10
-5

 

ESM Table 4. Lead variant at AGMO (rs73284431) conditional on previously reported 

variants (rs10238625, rs10276674). 

ESM Table 5. T2D reciprocal conditional analysis results between the lead variants in 

Zulu/AADM meta-analysis (rs12277475) and reported index variants rs3842770, rs7107784 

at the INS locus. 

ESM Table 6. VNTR lineages and lineage groups associated with T2D in Zulu, AADM and 

combined (frequency in Zulu/AADM > 0.01). 

ESM Table 7. T2D reciprocal conditional analysis results between VNTR lineage groups W 

and K, lead SNP rs12277475 and reported index variants rs3842770, rs7107784 in the Zulu 

data. 

ESM Table 8. T2D reciprocal conditional analysis results between VNTR lineage groups W 

and P, lead SNP rs12277475 and reported index variants rs3842770, rs7107784 in AADM. 

ESM Table 9. Finemapping of signals with posterior probabilities > 0.2 identified in this 

study in our African samples and comparison with Europeans. 

ESM Table 10. Posterior probabilities of the five hypotheses given by “coloc” regarding 

whether previously reported T2D signals and African signals share the same causal variants 

in the 22 loci replicated by either the direct or the local approach. 


