ESM Table 1 Fluorescent monoclonal antibodies used in the study

Antigen	Clone	Fluorochrome	Manufacturer
CD3	SK7	APC-F750	Biolegend, San Diego, CA
CD4	RPA-T4	APC-H7	BD Biosciences
		APC-F750	Biolegend
		FITC	Biolegend
		PE-Cy7	Biolegend
		BV510	Biolegend
CD45RA	H100	FITC	Biolegend
		PerCP-Cy5.5	Biolegend
CCR7	G043H7	A647	Biolegend
CD27	M-T271	BV421	Biolegend
		APC-R700	BD Biosciences
		PerCP-Cy5.5	Biolegend
CD25	BC96	PE-Cy7	Biolegend
PD-1	EH12.2H7	PE	Biolegend
ICOS	C398.4A	A647	Biolegend
		APC	Biolegend
HLA-DR	L243	BV421	Biolegend
CXCR3	G025H7	A647	Biolegend
CXCR5	J252D4	PerCP-Cy5.5	Biolegend
	RF8B2	BB515	BD Biosciences
CX3CR1	2A9-1	A647	Biolegend
CCR2	K036C2	BV421	Biolegend
		BV605	Biolegend
CCR5	J418F1	BV421	Biolegend
IFN- γ	4S.B3	APC	Biolegend
IL-2	MQ1-17H12	PE-Cy7	Biolegend
IL-21	3A3-N2	BV421	BD Biosciences
CD19	HIB19	BV510	Biolegend
CD20	2H7	APC	BD Biosciences
IgD	IA6-2	A488	Biolegend
CD38	HIT2	BV421	Biolegend
CD138	MI15	PE	Biolegend
CD14	M5E2	BV510	Biolegend
CD56	HCD56	BV510	Biolegend
Zombie Aqua	Live/Dead		Biolegend

Each antibody was titrated before use to ensure an optimal signal-to-noise ratio.

ESM Table 2 Characteristics of autoantibody-positive at-risk children

	Nonprogressors ($\mathrm{n}=25$)	Progressors ($\mathrm{n}=15$)
Age at sampling (years +/-SD)	$9.3+/-4.8$	$9.4+$ - 4.6
Age at first AAb (years +/-SD)	$4.8+/-4.0$	$3.8+/-2.8$
HLA class II genotype ${ }^{1}(\%)$		
DQ2.5/x	2/25 (8.0\%)	4/15 (26.7\%)
DQ8/x	18/25 (72.0\%)	6/15 (40.0\%)
DQ2.5/DQ8	5/25 (20.0\%)	5/15 (33.3\%)
Number of autoantibodies ${ }^{2}$ (\%)		
1	9/25 (36.0\%)	4/15 (26.7\%)
2	13/25 (52.0\%)	8/15 (53.3\%)
3	3/25 (12.0\%)	3/15 (20.0\%)

${ }^{1} \mathrm{DQ} 2.5=\mathrm{DQA} 1 * 05-\mathrm{DQB} 1 * 02, \mathrm{DQ} 8=\mathrm{DRB} 1 * 04-\mathrm{DQA} 1 * 03-\mathrm{DQB} 1 * 0302, \mathrm{x} \neq \mathrm{DQB} 1 * 0602$
${ }^{2}$ number of biochemical autoantibodies (IAA, GADA and IA-2A) detected at sampling
a

CXCR5 ${ }^{+}$PD- $1^{\text {hi }}$

b

Gated to B cells (CD3-CD4-)

e

ESM Figure 1 (a) Representative staining of CD45RA and CCR7 on CD3 ${ }^{+} \mathrm{CD} 4+$ CXCR5-PD- ${ }^{\text {hi }}$ and CXCR5 ${ }^{+}$PD- $1^{\text {hi }}$ T cells. (b) The distribution of CXCR5-PD- $1^{\text {hi }}$ and CXCR5 ${ }^{+}$PD-1 ${ }^{\text {hi }} \mathrm{T}$ cells within naïve ($\mathrm{CD} 45 \mathrm{RA}^{+} \mathrm{CCR}^{+}$), central memory (CM , CD45RA ${ }^{-} \mathrm{CCR} 7^{+}$) and effector memory (EM , CD45RA ${ }^{-C C R} 7^{-}$) subsets in eight healthy donors analyzed. For the T-cell and B-cell coculture assays different sorted T-cell subsets were cocultured with either memory ($\mathrm{CD} 27^{+}$) or naive ($\mathrm{CD} 27^{-}$) B cells and the frequencies of T cells $\left(\mathrm{CD} 3^{+} \mathrm{CD} 4^{+}\right)$, plasma cells ($\mathrm{CD} 3^{-} \mathrm{CD} 4-\mathrm{CD} 38^{\mathrm{hi}} \mathrm{CD} 138^{+}$) and plasmablasts (CD3-CD4-CD20 ${ }^{\text {low }} \mathrm{CD} 38^{\text {hi }}$) were analyzed after 7 days. (c) A representative example of the assay with CXCR5-PD-1 (top panels) and CXCR5-PD-1 ${ }^{\text {hi }}$ memory CD4+ T cells (bottom panels) cocultured with memory B cells is shown. (d) Absolute numbers of CD138 ${ }^{+}$plasma cells in cocultures with memory B cells were determined with counting beads. (e, f) Frequencies and absolute numbers of plasmablasts in cocultures with naive B cells, and (\mathbf{g}) the absolute number of T cells in cocultures with memory B cells. The dashed line indicates the input number of T cells in the coculture (5000 T cells). The results are expressed as mean $+/$-SEM of four separate experiments performed with cells from different healthy donors. ${ }^{*} p<0.05$ and ${ }^{* *} p<0.01$ compared to naive CD4+ T cells (grey bars); Kruskal-Wallis test with Dunn's post hoc test

ESM Figure $2(\mathbf{a}, \mathbf{b})$ Pairwise analyses of CXCR5-PD-1 ${ }^{\text {hi }} \mathrm{Tph}$ and CXCR5 ${ }^{+}$PD-1 $1^{\text {hi }}$ Tfh cell frequencies. Samples from autoantibody-positive at-risk children (AAb+) who did not progress (NP) or progressed (P) to type 1 diabetes (T1D) and from children with newly diagnosed T1D were compared to samples from age-matched healthy children (control) processed and analyzed in parallel. p values from paired Wilcoxon tests are indicated. (c) The frequencies of CXCR5-PD- $\mathrm{i}^{\text {int }}$ and CXCR5 ${ }^{+}$PD- $1^{\text {int }}$ memory CD4+ T cells in the study groups. (d) CXCR5 ${ }^{+}$PD- $1^{\text {hi }} \mathrm{Tfh}$ cell frequencies in children with newly diagnosed T1D stratified based on the number of biochemical autoantibodies (IAA, GADA and IA-2A) detected in their blood at the time of sampling. (e) The frequency of CXCR 5^{+}PD- $1^{\text {hi }}$ Tfh cells correlates negatively with age. Correlation was calculated by pooling all samples analyzed and is expressed together with the p value next to plot. (f) Expression of surface markers (TIGIT, ICOS, CD27, HLA-DR and CCR2) on manually gated CXCR $5-\mathrm{PD}-1^{\text {hi }} \mathrm{T}$ cells in a total of 15 children with T1D and 15 healthy controls (validation cohort). (g) Manually gated CXCR5-PD-1 ${ }^{\text {hi }}$ TIGIT $^{+}$memory T cell frequencies in 15 children with T1D and 15 healthy controls. Median values with interquartile range are shown. ${ }^{*} p<0.05$ and ${ }^{* *} p<0.01$; Kruskal-Wallis test with Dunn's post hoc test or Mann-Whitney U test

