ESM Table 1 Fluorescent monoclonal antibodies used in the study

| Antigen     | Clone     | Fluorochrome | Manufacturer             |
|-------------|-----------|--------------|--------------------------|
| CD3         | SK7       | APC-F750     | Biolegend, San Diego, CA |
| CD4         | RPA-T4    | APC-H7       | BD Biosciences           |
|             |           | APC-F750     | Biolegend                |
|             |           | FITC         | Biolegend                |
|             |           | PE-Cy7       | Biolegend                |
|             |           | BV510        | Biolegend                |
| CD45RA      | H100      | FITC         | Biolegend                |
|             |           | PerCP-Cy5.5  | Biolegend                |
| CCR7        | G043H7    | A647         | Biolegend                |
| CD27        | M-T271    | BV421        | Biolegend                |
|             |           | APC-R700     | BD Biosciences           |
|             |           | PerCP-Cy5.5  | Biolegend                |
| CD25        | BC96      | PE-Cy7       | Biolegend                |
| PD-1        | EH12.2H7  | PE           | Biolegend                |
| ICOS        | C398.4A   | A647         | Biolegend                |
|             |           | APC          | Biolegend                |
| HLA-DR      | L243      | BV421        | Biolegend                |
| CXCR3       | G025H7    | A647         | Biolegend                |
| CXCR5       | J252D4    | PerCP-Cy5.5  | Biolegend                |
|             | RF8B2     | BB515        | BD Biosciences           |
| CX3CR1      | 2A9-1     | A647         | Biolegend                |
| CCR2        | K036C2    | BV421        | Biolegend                |
|             |           | BV605        | Biolegend                |
| CCR5        | J418F1    | BV421        | Biolegend                |
| IFN-γ       | 4S.B3     | APC          | Biolegend                |
| IL-2        | MQ1-17H12 | PE-Cy7       | Biolegend                |
| IL-21       | 3A3-N2    | BV421        | BD Biosciences           |
| CD19        | HIB19     | BV510        | Biolegend                |
| CD20        | 2H7       | APC          | BD Biosciences           |
| IgD         | IA6-2     | A488         | Biolegend                |
| CD38        | HIT2      | BV421        | Biolegend                |
| CD138       | MI15      | PE           | Biolegend                |
| CD14        | M5E2      | BV510        | Biolegend                |
| CD56        | HCD56     | BV510        | Biolegend                |
| Zombie Aqua | Live/Dead | . 1 1 1 1    | Biolegend                |

Each antibody was titrated before use to ensure an optimal signal-to-noise ratio.

ESM Table 2 Characteristics of autoantibody-positive at-risk children

|                                           | Nonprogressors (n=25) | Progressors (n=15) |
|-------------------------------------------|-----------------------|--------------------|
| Age at sampling (years +/-SD)             | 9.3 +/- 4.8           | 9.4 +/- 4.6        |
| Age at first AAb (years +/-SD)            | 4.8 +/- 4.0           | 3.8 +/- 2.8        |
| HLA class II genotype <sup>1</sup> (%)    |                       |                    |
| DQ2.5/x                                   | 2/25 (8.0%)           | 4/15 (26.7%)       |
| DQ8/x                                     | 18/25 (72.0%)         | 6/15 (40.0%)       |
| DQ2.5/DQ8                                 | 5/25 (20.0%)          | 5/15 (33.3%)       |
| Number of autoantibodies <sup>2</sup> (%) |                       |                    |
| 1                                         | 9/25 (36.0%)          | 4/15 (26.7%)       |
| 2                                         | 13/25 (52.0%)         | 8/15 (53.3%)       |
| 3                                         | 3/25 (12.0%)          | 3/15 (20.0%)       |

 $<sup>^{1}</sup>$ DQ2.5 = DQA1\*05-DQB1\*02, DQ8 = DRB1\*04-DQA1\*03-DQB1\*0302, x  $\neq$  DQB1\*0602  $^{2}$  number of biochemical autoantibodies (IAA, GADA and IA-2A) detected at sampling



ESM Figure 1 (a) Representative staining of CD45RA and CCR7 on CD3<sup>+</sup>CD4<sup>+</sup> CXCR5<sup>-</sup>PD-1<sup>hi</sup> and CXCR5<sup>+</sup>PD-1<sup>hi</sup> T cells. (b) The distribution of CXCR5<sup>-</sup>PD-1<sup>hi</sup> and CXCR5<sup>+</sup>PD-1<sup>hi</sup> T cells within naïve (CD45RA<sup>+</sup>CCR7<sup>+</sup>), central memory (CM, CD45RA<sup>-</sup>CCR7<sup>+</sup>) and effector memory (EM, CD45RA<sup>-</sup>CCR7<sup>-</sup>) subsets in eight healthy donors analyzed. For the T-cell and B-cell coculture assays different sorted T-cell subsets were cocultured with either memory (CD27<sup>+</sup>) or naive (CD27<sup>-</sup>) B cells and the frequencies of T cells (CD3<sup>+</sup>CD4<sup>+</sup>), plasma cells (CD3<sup>-</sup>CD4<sup>-</sup>CD38<sup>hi</sup>CD138<sup>+</sup>) and plasmablasts (CD3<sup>-</sup>CD4<sup>-</sup>CD20<sup>low</sup>CD38<sup>hi</sup>) were analyzed after 7 days. (c) A representative example of the assay with CXCR5<sup>-</sup>PD-1<sup>-</sup> (top panels) and CXCR5<sup>-</sup>PD-1<sup>hi</sup> memory CD4<sup>+</sup> T cells (bottom panels) cocultured with memory B cells is shown. (d) Absolute numbers of CD138<sup>+</sup> plasma cells in cocultures with memory B cells were determined with counting beads. (e, f) Frequencies and absolute numbers of plasmablasts in cocultures with naive B cells, and (g) the absolute number of T cells in cocultures with memory B cells. The dashed line indicates the input number of T cells in the coculture (5000 T cells). The results are expressed as mean +/-SEM of four separate experiments performed with cells from different healthy donors. \*p<0.05 and \*\* p<0.01 compared to naive CD4<sup>+</sup> T cells (grey bars); Kruskal–Wallis test with Dunn's post hoc test



**ESM Figure 2** (a,b) Pairwise analyses of CXCR5-PD-1<sup>hi</sup> Tph and CXCR5+PD-1<sup>hi</sup> Tfh cell frequencies. Samples from autoantibody-positive at-risk children (AAb+) who did not progress (NP) or progressed (P) to type 1 diabetes (T1D) and from children with newly diagnosed T1D were compared to samples from age-matched healthy children (control) processed and analyzed in parallel. p values from paired Wilcoxon tests are indicated. (c) The frequencies of CXCR5-PD-1<sup>int</sup> and CXCR5+PD-1<sup>int</sup> memory CD4+ T cells in the study groups. (d) CXCR5+PD-1<sup>hi</sup> Tfh cell frequencies in children with newly diagnosed T1D stratified based on the number of biochemical autoantibodies (IAA, GADA and IA-2A) detected in their blood at the time of sampling. (e) The frequency of CXCR5+PD-1<sup>hi</sup> Tfh cells correlates negatively with age. Correlation was calculated by pooling all samples analyzed and is expressed together with the p value next to plot. (f) Expression of surface markers (TIGIT, ICOS, CD27, HLA-DR and CCR2) on manually gated CXCR5-PD-1<sup>hi</sup> T cells in a total of 15 children with T1D and 15 healthy controls (validation cohort). (g) Manually gated CXCR5-PD-1<sup>hi</sup> TIGIT+ memory T cell frequencies in 15 children with T1D and 15 healthy controls. Median values with interquartile range are shown. \*p<0.05 and \*p<0.01; Kruskal-Wallis test with Dunn's post hoc test or Mann-Whitney U test