- I. Supplementary Table 1. Associations between different dietary iron intakes (mg/d) and serum iron (μ mol/L) using linear regression presented as beta coefficients (95% CI) (n = 522)
- **II. Supplementary Table 2.** Associations between different dietary iron intakes and haemoglobin using linear regression presented as beta coefficients (95% CI) (n = 523)
- III. Supplementary Table 3. Number (%) of major adverse cardiovascular events (MACE) and individual endpoints of MACE events stratified by tertiles of iron intakes (n = 539)
- **IV. Supplementary Table 4.** Predictors of five-point MACE in univariate analysis unadjusted using Cox regression presented as hazard ratios (95% CI) (n=539)
- V. Supplementary Table 5. Associations between dietary iron intakes and individual endpoints of MACE using Cox regression presented as hazard ratios (95% CI) (n = 539)
- **VI.** Supplementary Table 6. Associations between dietary iron intakes, MACE and individual endpoints using Cox regression further adjusted with food subgroup intakes presented as hazard ratios (95% CI) (n = 516)
- VII. Supplementary Figure 1. Linear relationship between HI intake and MACE through plotting decile midpoints of HI intake versus decile beta coefficients from fully adjusted analyses: (A) five-point MACE; (B) four-point MACE excluding allcause mortality.
- VIII. Supplementary Figure 2. Survival free of individual endpoints of MACE unadjusted analyses: (A) all-cause mortality; (B) CCF; (C) coronary revascularisation; (D) MI; (E) stroke.

IX. Supplementary Figure 3. Survival free of individual endpoints of MACE fully adjusted analyses: (A) all-cause mortality; (B) CCF; (C) coronary revascularisation; (D) MI; (E) stroke. **Supplementary Table 1.** Associations between different dietary iron intakes (mg/d) and serum iron (μ mol/L) using linear regression presented as beta coefficients (95% CI) (n = 522)

As continuous variable
0.04 (-0.02, 0.09) P = .20
0.01 (-0.05, 0.07) P = .69
0.02 (-0.04, 0.08) P = .60
0.02 (-0.04, 0.08) P = .53
-0.25 (-0.77, 0.26) P = .33
-0.43 (-1.07, 0.22) P = .19
-0.48 (-1.14, 0.19) P = .16
-0.57 (-1.19, 0.06) P = .074
0.01 (-0.10, 0.13) P = .83
-0.08 (-0.23, 0.07) P = .29
-0.08 (-0.24, 0.08) P = .33
-0.03 (-0.18, 0.12) P = .73

Notes: Model 1 unadjusted (n = 522); Model 2 adjusted by sociodemographic and lifestyle factors (age (continuous), BMI (continuous), country of birth (Australia v. Greece/Italy v. other), marital status (married/de facto v. not married/divorced/separated/widowed/never married/other), age pension (only v. other), alcohol consumption (non-drinker v. ex-drinker v. safe drinker v. harmful drinker), smoking status (non-smoker v. ex-smoker v. current smoker), PASE (continuous), energy intake (continuous), Mediterranean diet score (continuous), number of serves of fruits (continuous), vegetables (continuous), grains (continuous), meat/alternatives (continuous), dairy/alternatives (continuous), and iron and/or multivitamin

supplement use (yes v. no)) (n = 509); Model 3 adjusted by Model 2 plus health (number of medications (continuous), frailty status (robust v. pre-frail v. frail), number of comorbidities (continuous) and IL-6 (continuous)) without haemoglobin (n = 476) and with haemoglobin (continuous) (n = 474)

Supplementary Table 2. Associations between different dietary iron intakes and haemoglobin

Iron intake	As continuous variable
Total iron ^a	
Model 1	-0.01 (-0.15, 0.12) P = .84
Model 2	0.00 (-0.14, 0.15) P = .96
Model 3	0.00 (-0.14, 0.14) P = .97
Haem iron ^b	
Model 1	0.70 (-0.56, 1.96) P = .27
Model 2	0.72 (-0.82, 2.26) P = .36
Model 3	0.64 (-0.90, 2.17) P = .82
Non-haem iron ^c	
Model 1	-0.13 (-0.41, 0.15) P = .37
Model 2	-0.26 (-0.62, 0.10) P = .16
Model 3	-0.28 (-0.64, 0.08) P = .13

using linear regression presented as beta coefficients (95% CI) (n = 523)

Notes: Model 1 unadjusted (n = 523 for total); Model 2 adjusted by sociodemographic and lifestyle factors (age (continuous), BMI (continuous), country of birth (Australia v. Greece/Italy v. other), marital status (married/de facto v. not married/divorced/separated/widowed/never married/other), age pension (only v. other), alcohol consumption (non-drinker v. ex-drinker v. safe drinker v. harmful drinker), smoking status (non-smoker v. ex-smoker v. current smoker), PASE (continuous), energy intake (continuous), Mediterranean diet score (continuous), number of serves of fruits (continuous), vegetables (continuous), grains (continuous), meat/alternatives (continuous), dairy/alternatives (continuous), and iron and/or multivitamin supplement use (yes v. no)) (n = 509); Model 3 adjusted by Model 2 plus health (number of medications (continuous), frailty status (robust v. pre-frail v. frail), number of comorbidities (continuous) and IL-6 (continuous)) (n = 475 for total)

Iron intake	Bottom tertile	Middle tertile	Top tertile
Total iron ^a	≤11.26mg/d	11.27-14.75mg/d	≥14.76mg/d
Five-point MACE	63 (35.0)	51 (28.3)	54 (30.2)
Four-point MACE excluding	38 (39.6)	30 (31.3)	28 (29.2)
all-cause mortality			
All-cause mortality	41 (22.8)	32 (17.8)	38 (21.2)
Myocardial infarction	6 (3.3)	6 (3.3)	8 (4.5)
Congestive cardiac failure	24 (13.3)	20 (11.1)	17 (9.5)
Ischaemic stroke	8 (4.4)	4 (2.2)	5 (2.8)
Coronary revascularisation	3 (1.7)	7 (3.9)	5 (2.8)
Haem iron ^b	≤1.40mg/d	1.41-2.10mg/d	≥2.11mg/d
Five-point MACE	56 (31.1)	59 (32.8)	53 (29.6)
Four-point MACE excluding	31 (32.3)	33 (34.4)	32 (33.3)
all-cause mortality			
All-cause mortality	35 (19.4)	40 (22.2)	36 (20.1)
Myocardial infarction	9 (5.0)	7 (3.9)	4 (2.2)
Congestive cardiac failure	16 (8.9)	25 (13.9)	20 (11.2)
Ischaemic stroke	7 (3.9)	5 (2.8)	5 (2.8)
Coronary revascularisation	3 (1.7)	3 (1.7)	9 (5.0)
Non-haem iron ^c	≤9.42mg/d	9.43-12.77mg/d	≥12.78mg/d
Five-point MACE	64 (35.6)	47 (26.1)	57 (31.8)
Four-point MACE excluding	39 (40.6)	29 (30.2)	28 (29.2)
all-cause mortality			
All-cause mortality	42 (23.3)	29 (16.1)	40 (22.3)
Myocardial infarction	6 (3.3)	7 (3.9)	7 (3.9)
Congestive cardiac failure	24 (13.3)	21 (11.7)	16 (8.9)
Ischaemic stroke	8 (4.4)	4 (2.2)	5 (2.8)
Coronary revascularisation	6 (3.3)	3 (1.7)	6 (3.4)

Supplementary Table 3. Number (%) of major adverse cardiovascular events (MACE) and individual endpoints of MACE events stratified by tertiles of iron intakes (n = 539)

^a Bottom tertile ≤ 11.26 mg/d, n = 180 with median (IQR) 9.59 (8.24, 10.41); middle tertile 11.27-14.75 mg/d, n = 180 with median (IQR) 12.71 (11.92, 13.66); top tertile ≥ 14.76 mg/d, n = 179 with median (IQR) 17.64 (15.98, 20.13)

^b Bottom tertile ≤ 1.40 mg/d, n = 180 with median (IQR) 1.00 (0.75, 1.21); middle tertile 1.41-2.10 mg/d, n = 180 with median (IQR) 1.74 (1.58, 1.92); top tertile ≥ 2.11 mg/d, n = 179 with median (IQR) 2.65 (2.38, 3.14)

^c Bottom tertile $\leq 9.42 \text{ mg/d}$, n = 180 with median (IQR) 7.93 (6.72, 8.75); middle tertile 9.43-12.77 mg/d, n = 180 with median (IQR) 10.86 (10.15, 11.62); top tertile $\geq 12.78 \text{ mg/d}$, n = 179, with median (IQR) 15.30 (13.81, 17.55)

Risk factor	Hazard ratios (95% CI)
Age	1.11 (1.08, 1.14) P < .001
BMI (kg/m^2) $(n = 533)$	0.96 (0.92, 0.99) P = .012
Country of birth	
Australia (reference)	1
Greece/ Italy	0.68 (0.46, 1.02) P = .061
Other	0.88 (0.61, 1.28) P = .51
Source of income $(n = 538)$	
Age Pension only	1
Other	0.78 (0.57, 1.05) P = .11
Energy intake	1.00 (1.00,1.00) P = .61
Vegetables	0.93 (0.86, 1.01) P = .067
Fruit	0.94 (0.84, 1.05) P = .25
Meat/alternatives	0.81 (0.71, 0.93) P = .002
Grains	0.93 (0.86, 1.00) P = .040
Medication use	
Neither NSAID, anticoagulant, antiplatelet,	1
PPI and/or H2RA (reference)	
NSAID, anticoagulant and/or antiplatelet	1.32 (0.92, 1.90) P = .14
only	
PPI and/or H2RA only	1.23 (0.76, 2.00) P = .40
NSAID, anticoagulant and/or antiplatelet	1.76 (1.12, 2.76) P = .0.13
with PPI and/or H2RA	
Haemoglobin (g/L) ($n = 523$)	0.98 (0.97, 0.99) P < .001
Anaemia (n = 523) (Haemoglobin<130g/L)	
No (reference)	1
Yes	1.65 (1.13, 2.41) P = .009
Frailty status ($n = 534$)	
Robust (reference)	1
Pre-frail	1.59 (1.14, 2.20) P = .006
Frail	5.47 (3.19, 9.38) P < .001

Supplementary Table 4. Predictors of five-point MACE in univariate analysis unadjusted using Cox regression presented as hazard ratios (95% CI) (n=539)

Chronic Kidney Disease (eGFR

<60mL/min/1.73m²) (n = 525)

No (reference) 1

Yes 1.50 (1.10, 2.06) P = .011

Iron intake	Bottom	Middle tertile	Top tertile	As continuous
	tertile			variable
	(reference			
	category)			
Total iron ^a	≤11.26mg/d	11.27-14.75mg/d	≥14.76mg/d	+1mg/d
All-cause				
mortality				
Model 1	1	0.68 (0.43, 1.08)	0.81 (0.52, 1.26)	1.01 (0.99, 1.03)
		P = .10	P = .36	P = .24
Model 2	1	0.63 (0.38, 1.04)	0.63 (0.35, 1.13)	1.00 (0.98, 1.02)
		P = .071	P = .12	P = .86
Model 3	1	0.63 (0.37, 1.06)	0.63 (0.35, 1.13)	1.00 (0.98, 1.02)
		P = .084	P = .12	P = .83
Congestive				
cardiac failure				
Model 1	1	0.75 (0.41, 1.36)	0.64 (0.34, 1.19)	0.99 (0.95, 1.03)
		P = .34	P = .16	P = .62
Model 2	1	1.02 (0.52, 2.00)	1.06 (0.47, 2.39)	1.00 (0.97, 1.03)
		P = .95	P = .88	P = .99
Model 3	1	1.11 (0.56, 2.21)	0.99 (0.43, 2.25)	1.00 (0.96, 1.03)
		P = .77	P = .98	P = 1.00
Coronary				
revascularisation				
Model 1	1	2.09 (0.54, 8.11)	1.54 (0.37, 6.47)	1.00 (0.94, 1.06)
		P = .29	P = .56	P = .99
Model 2	1	2.56 (0.63, 10.47)	1.70 (0.30, 9.85)	1.00 (0.93, 1.08)
		P = .19	P = .55	P = .97
N 110 ⁺	1	2 14 (0 59 10 15)	1.66 (0.28, 9.69)	1.00 (0.92, 1.08)
Model 3 ⁺	1	2.77(0.5), 10.15)	1.00 (0.20, 7.07)	1.00(0.72, 1.00)

Supplementary Table 5. Associations between dietary iron intakes and individual endpoints of MACE using Cox regression presented as hazard ratios (95% CI) (n = 539)

Myocar	rdial
--------	-------

mu cuon				
Model 1	1	0.88 (0.28, 2.73)	1.15 (0.40, 3.34)	1.01 (0.97, 1.05)
		P = .82	P = .79	P = .59
Model 2	1	1.26 (0.37, 4.30)	1.76 (0.45, 6.80)	1.00 (0.96, 1.05)
		P = .72	P = .42	P = .84
Model 3 [#]	1	1.55 (0.40, 5.98)	2.20 (0.49, 9.87)	1.01 (0.97, 1.06)
		P = .52	P = .31	P = .67
Ischaemic stroke				
Model 1	1	0.45 (0.14, 1.51)	0.57 (0.19, 1.75)	0.99 (0.93, 1.06)
		P = .20	P = .33	P = .85
Model 2	1	0.61 (0.17, 2.23)	0.94 (0.22, 4.13)	1.01 (0.96, 1.06)
		P = .45	P = .94	P = .71
Model 3	1	0.59 (0.16, 2.22)	0.78 (0.17, 3.56)	1.01 (0.95, 1.06)
		P = .43	P = .74	P = .83
Haem iron ^b	≤ 1.40 mg/d	1.41-2.10mg/d	≥2.11mg/d	+1mg/d
All-cause				
mortality				
mortality Model 1	1	1.16 (0.74, 1.83)	1.03 (0.65, 1.64)	1.11 (0.93, 1.33)
•	1	1.16 (0.74, 1.83) P = .52	1.03 (0.65, 1.64) P = .90	
•	1		P = .90	P = .23
Model 1		P = .52	P = .90	P = .23
Model 1		P = .52 1.39 (0.83, 2.33)	P = .90 1.49 (0.82, 2.71) P = .19	P = .23 1.50 (1.14, 1.97)
Model 1 Model 2	1	P = .52 1.39 (0.83, 2.33) P = .22	P = .90 1.49 (0.82, 2.71) P = .19	P = .23 1.50 (1.14, 1.97) P = .004
Model 1 Model 2	1	P = .52 1.39 (0.83, 2.33) P = .22 1.56 (0.91, 2.67)	P = .90 1.49 (0.82, 2.71) P = .19 1.60 (0.87, 2.95)	P = .23 1.50 (1.14, 1.97) P = .004 1.51 (1.15, 1.99)
Model 1 Model 2 Model 3	1	P = .52 1.39 (0.83, 2.33) P = .22 1.56 (0.91, 2.67)	P = .90 1.49 (0.82, 2.71) P = .19 1.60 (0.87, 2.95)	P = .23 1.50 (1.14, 1.97) P = .004 1.51 (1.15, 1.99)
Model 1 Model 2 Model 3 Congestive	1	P = .52 1.39 (0.83, 2.33) P = .22 1.56 (0.91, 2.67) P = .10	P = .90 1.49 (0.82, 2.71) P = .19 1.60 (0.87, 2.95)	P = .23 1.50 (1.14, 1.97) P = .004 1.51 (1.15, 1.99) P = .003
Model 1 Model 2 Model 3 Congestive cardiac failure	1	P = .52 1.39 (0.83, 2.33) P = .22 1.56 (0.91, 2.67) P = .10	P = .90 1.49 (0.82, 2.71) P = .19 1.60 (0.87, 2.95) P = .13	P = .23 1.50 (1.14, 1.97) P = .004 1.51 (1.15, 1.99) P = .003
Model 1 Model 2 Model 3 Congestive cardiac failure	1	P = .52 1.39 (0.83, 2.33) P = .22 1.56 (0.91, 2.67) P = .10 1.61 (0.86, 3.01)	P = .90 1.49 (0.82, 2.71) P = .19 1.60 (0.87, 2.95) P = .13 1.25 (0.65, 2.41) P = .51	P = .23 1.50 (1.14, 1.97) P = .004 1.51 (1.15, 1.99) P = .003 1.14 (0.89, 1.47) P = .30
Model 1 Model 2 Model 3 Congestive cardiac failure Model 1	1 1	P = .52 1.39 (0.83, 2.33) P = .22 1.56 (0.91, 2.67) P = .10 1.61 (0.86, 3.01) P = .14	P = .90 1.49 (0.82, 2.71) P = .19 1.60 (0.87, 2.95) P = .13 1.25 (0.65, 2.41) P = .51	P = .23 1.50 (1.14, 1.97) P = .004 1.51 (1.15, 1.99) P = .003 1.14 (0.89, 1.47) P = .30
Model 1 Model 2 Model 3 Congestive cardiac failure Model 1	1 1	P = .52 1.39 (0.83, 2.33) P = .22 1.56 (0.91, 2.67) P = .10 1.61 (0.86, 3.01) P = .14 2.70 (1.32, 5.55)	P = .90 1.49 (0.82, 2.71) P = .19 1.60 (0.87, 2.95) P = .13 1.25 (0.65, 2.41) P = .51 2.92 (1.27, 6.76) P = .012	P = .23 1.50 (1.14, 1.97) P = .004 1.51 (1.15, 1.99) P = .003 1.14 (0.89, 1.47) P = .30 2.01 (1.41, 2.87) P < .001
Model 1 Model 2 Model 3 Congestive cardiac failure Model 1 Model 2	1 1 1 1	P = .52 1.39 (0.83, 2.33) P = .22 1.56 (0.91, 2.67) P = .10 1.61 (0.86, 3.01) P = .14 2.70 (1.32, 5.55) P = .007	P = .90 1.49 (0.82, 2.71) P = .19 1.60 (0.87, 2.95) P = .13 1.25 (0.65, 2.41) P = .51 2.92 (1.27, 6.76) P = .012	P = .23 1.50 (1.14, 1.97) P = .004 1.51 (1.15, 1.99) P = .003 1.14 (0.89, 1.47) P = .30 2.01 (1.41, 2.87) P < .001

Coronary				
revascularisation				
Model 1	1	0.99 (0.20, 4.89)	3.04 (0.82,	1.88 (1.30, 2.72)
		P = .99	11.22) P = .096	P = .001
Model 2	1	0.68 (0.13, 3.56)	2.11 (0.49, 9.16)	1.98 (1.20, 3.26)
		P = .65	P = .32	P = .007
Model 3 ⁺	1	0.70 (0.13, 3.81)	2.13 (0.49, 9.36)	1.89 (1.15, 3.10)
		P = .68	P = .32	P = .012
Myocardial				
infarction				
Model 1	1	0.78 (0.29, 2.11)	0.44 (0.14, 1.43)	0.78 (0.46, 1.32)
		P = .63	P = .17	P = .35
Model 2	1	0.90 (0.30, 2.71)	0.58 (0.15, 2.35)	1.01 (0.51, 1.98)
		P = .85	P = .45	P = .98
Model 3 [#]	1	0.89 (0.27, 2.95)	0.58 (0.12, 2.81)	1.09 (0.56, 2.14)
		P = .85	P = .50	P = .80
Ischaemic stroke				
Model 1	1	0.71 (0.23, 2.25)	0.72 (0.23, 2.25)	0.90 (0.53, 1.55)
		P = .56	P = .57	P = .70
Model 2	1	0.69 (0.20, 2.44)	0.83 (0.21, 3.34)	1.08 (0.53, 2.21)
		P = .57	P = .79	P = .84
Model 3	1	0.67 (0.19, 2.35)	0.81 (0.20, 3.31)	1.06 (0.53, 2.13)
		P = .53	P = .76	P = .87
Non-haem iron ^c	≤9.42mg/d	9.43-12.77mg/d	≥12.78mg/d	+1mg/d

All-cause

mortality				
Model 1	1	0.60 (0.38, 0.97)	0.84 (0.54, 1.29)	0.99 (0.95, 1.03)
		P = .037	P = .42	P = .57
Model 2	1	0.54 (0.32, 0.90)	0.65 (0.36, 1.17)	0.95 (0.89, 1.01)
		P = .018	P = .15	P = .12
Model 3	1	0.56 (0.33, 0.96)	0.65 (0.35, 1.18)	0.94 (0.88, 1.00)
		P = .035	P = .16	P = .055

Congestive

cardiac failure

Model 1	1	0.79 (0.44, 1.43)	0.60 (0.32, 1.13)	0.97 (0.90, 1.03)
		P = .44	P = .11	P = .31
Model 2	1	1.02 (0.53, 1.99)	0.86 (0.37, 1.99)	1.02 (0.94, 1.10)
		P = .94	P = .73	P = .68
Model 3	1	1.11 (0.56, 2.21)	0.84 (0.35, 1.99)	1.00 (0.92, 1.08)
		P = .77	P = .69	P = .95

Coronary

revascularisation

Model 1	1	0.44 (0.11, 1.76)	0.91 (0.29, 2.84)	1.00 (0.88, 1.13)
		P = .24	P = .87	P = .99
Model 2	1	0.53 (0.12, 2.27)	0.94 (0.21, 4.24)	1.00 (0.84, 1.19)
		P = .39	P = .93	P = .99
Model 3 ⁺	1	0.45 (0.10, 1.97)	0.84 (0.18, 3.98)	1.00 (0.83, 1.20)
		P = .29	P = .82	P = .97
Myocardial				

infarction

marchon				
Model 1	1	1.03 (0.34, 3.06)	1.01 (0.34, 3.01)	1.03 (0.95, 1.13)
		P = .96	P = .99	P = .45
Model 2	1	1.28 (0.40, 4.12)	1.31 (0.32, 5.40)	1.03 (0.94, 1.13)
		P = .68	P = .71	P = .56
Model 3 [#]	1	1.52 (0.43, 5.36)	1.48 (0.32, 6.90)	1.04 (0.93, 1.15)
		P = .52	P = .62	P = .52
Ischaemic stroke				
Model 1	1	0.46 (0.14, 1.53)	0.57 (0.19, 1.76)	0.93 (0.81, 1.06)
		P = .20	P = .33	P = .28
Model 2	1	0.62 (0.17, 2.30)	0.95 (0.21, 4.25)	0.99 (0.83, 1.18)
		P = .48	P = .94	P = .92
Model 3	1	0.65 (0.17, 2.47)	0.93 (0.18, 3.85)	0.96 (0.81, 1.14)
		P = .53	P = .82	P = .65

Notes: Model 1 unadjusted (n = 539 for total, 111 all-cause mortality, 15 coronary revascularisation, 61 congestive cardiac failure, 20 myocardial infarction, and 17 stroke); Model 2 adjusted by age (continuous), BMI (continuous), country of birth (Australia v. Greece/Italy v. other), age pension (only v. other), energy intake (continuous), number of serves of vegetables (continuous), fruit (continuous), meat/alternatives (continuous), grains (continuous) (n = 532 for total, 108 all-cause mortality, 60 congestive cardiac failure, 15 coronary revascularisation, 20 myocardial infarction, and 17 stroke); Model 3 adjusted by Model 2 plus NSAID, anticoagulant, antiplatelet and/or PPI or H2RA use (NSAID, anticoagulant and/or antiplatelet only v. PPI and/or H2RA only v. NSAID, anticoagulant and/or H2RA v. neither NSAID, antiplatelet, anticoagulant, PPI or H2RA), haemoglobin (continuous), frailty status (robust v. pre-frail v. frail), and CKD (yes v. no) (n = 516 for total, 106 all-cause mortality, 57 congestive cardiac failure, and 17 stroke).

[#]Due to small numbers NSAID, anticoagulant, antiplatelet, PPI and/or H2RA use could not be included as a covariate for myocardial infarction. Model 3 (n = 516 for total and 18 myocardial infarction).

^a Bottom tertile ≤ 11.26 mg/d, n = 180 with median (IQR) 9.59 (8.24, 10.41); middle tertile 11.27-14.75 mg/d, n = 180 with median (IQR) 12.71 (11.92, 13.66); top tertile ≥ 14.76 mg/d, n = 179 with median (IQR) 17.64 (15.98, 20.13)

^b Bottom tertile $\leq 1.40 \text{ mg/d}$, n = 180 with median (IQR) 1.00 (0.75, 1.21); middle tertile 1.41-2.10 mg/d, n = 180 with median (IQR) 1.74 (1.58, 1.92); top tertile $\geq 2.11 \text{ mg/d}$, n = 179 with median (IQR) 2.65 (2.38, 3.14) ^c Bottom tertile $\leq 9.42 \text{ mg/d}$, n = 180 with median (IQR) 7.93 (6.72, 8.75); middle tertile 9.43-12.77 mg/d, n = 180 with median (IQR) 10.86 (10.15, 11.62); top tertile $\geq 12.78 \text{ mg/d}$, n = 179, with median (IQR) 15.30 (13.81, 17.55)

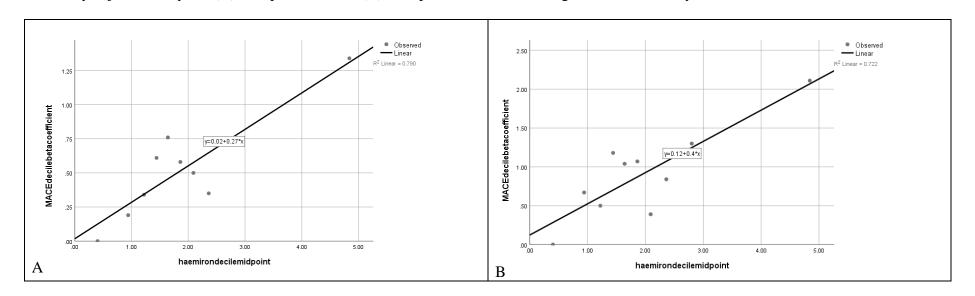
Supplementary Table 6. Associations between dietary iron intakes, MACE and individual endpoints using Cox regression further adjusted with food subgroup intakes presented as hazard ratios (95% CI) (n = 516)

tertilevariable(reference category) $(reference)$ Total iron ^a $\leq 11.26mg/d$ $11.27-14.75mg/d$ $\geq 14.76mg/d$ $+1mg/d$ Five-point MACE1 $0.79 (0.52, 1.20)$ $0.82 (0.50, 1.34)$ $1.00 (0.99, 1.02)$ $P = .27$ $P = .43$ $P = .74$ Four-point MACE $0.97 (0.56, 1.67)$ $1.09 (0.57, 2.09)$ $1.00 (0.97, 1.02)$ excluding all-cause $P = .90$ $P = .80$ $P = .93$ mortality1 $0.61 (0.36, 1.03)$ $0.63 (0.34, 1.17)$ $1.00 (0.98, 1.02)$ $P = .065$ $P = .14$ $P = .99$ Congestive cardiac1 $1.08 (0.54, 2.15)$ $1.07 (0.46, 2.50)$ $0.99 (0.96, 1.02)$ failure $P = .83$ $P = .87$ $P = .59$ Coronary1 $1.78 (0.42, 7.62)$ $1.37 (0.23, 8.29)$ $1.00 (0.91, 1.09)$ revascularisation* $P = .43$ $P = .73$ $P = .96$	
category)Total irona $\leq 11.26 \text{mg/d}$ $11.27-14.75 \text{mg/d}$ $\geq 14.76 \text{mg/d}$ $+1 \text{mg/d}$ Five-point MACE1 $0.79 (0.52, 1.20)$ $0.82 (0.50, 1.34)$ $1.00 (0.99, 1.02)$ P = .27P = .43P = .74Four-point MACE $0.97 (0.56, 1.67)$ $1.09 (0.57, 2.09)$ $1.00 (0.97, 1.02)$ excluding all-causeP = .90P = .80P = .93mortalityP = .90P = .80P = .93Congestive cardiac1 $0.61 (0.36, 1.03)$ $0.63 (0.34, 1.17)$ $1.00 (0.98, 1.02)$ failureP = .83P = .87P = .59Coronary1 $1.78 (0.42, 7.62)$ $1.37 (0.23, 8.29)$ $1.00 (0.91, 1.02)$	
Total iron ^a $\leq 11.26 \text{mg/d}$ $11.27 \cdot 14.75 \text{mg/d}$ $\geq 14.76 \text{mg/d}$ $+1 \text{mg/d}$ Five-point MACE1 $0.79 (0.52, 1.20)$ $0.82 (0.50, 1.34)$ $1.00 (0.99, 1.02)$ P = .27P = .43P = .74Four-point MACE $0.97 (0.56, 1.67)$ $1.09 (0.57, 2.09)$ $1.00 (0.97, 1.02)$ excluding all-causeP = .90P = .80P = .93mortality $P = .90$ P = .80P = .93Mortality1 $0.61 (0.36, 1.03)$ $0.63 (0.34, 1.17)$ $1.00 (0.98, 1.02)$ P = .065P = .14P = .99Congestive cardiac1 $1.08 (0.54, 2.15)$ $1.07 (0.46, 2.50)$ $0.99 (0.96, 1.02)$ failureP = .83P = .87P = .59Coronary1 $1.78 (0.42, 7.62)$ $1.37 (0.23, 8.29)$ $1.00 (0.91, 1.09)$	
Five-point MACE1 $0.79 (0.52, 1.20)$ $0.82 (0.50, 1.34)$ $1.00 (0.99, 1.02)$ P = .27P = .43P = .74Four-point MACE $0.97 (0.56, 1.67)$ $1.09 (0.57, 2.09)$ $1.00 (0.97, 1.02)$ excluding all-causeP = .90P = .80P = .93mortality $P = .90$ P = .80P = .93Mortality1 $0.61 (0.36, 1.03)$ $0.63 (0.34, 1.17)$ $1.00 (0.98, 1.02)$ P = .065P = .14P = .99Congestive cardiac1 $1.08 (0.54, 2.15)$ $1.07 (0.46, 2.50)$ $0.99 (0.96, 1.02)$ failureP = .83P = .87P = .59Coronary1 $1.78 (0.42, 7.62)$ $1.37 (0.23, 8.29)$ $1.00 (0.91, 1.09)$	
P = .27P = .43P = .74Four-point MACE $0.97 (0.56, 1.67)$ $1.09 (0.57, 2.09)$ $1.00 (0.97, 1.02)$ excluding all-causeP = .90P = .80P = .93mortality $P = .90$ P = .80P = .93All-cause mortality1 $0.61 (0.36, 1.03)$ $0.63 (0.34, 1.17)$ $1.00 (0.98, 1.02)$ P = .065P = .14P = .99Congestive cardiac1 $1.08 (0.54, 2.15)$ $1.07 (0.46, 2.50)$ $0.99 (0.96, 1.02)$ failureP = .83P = .87P = .59Coronary1 $1.78 (0.42, 7.62)$ $1.37 (0.23, 8.29)$ $1.00 (0.91, 1.09)$	
Four-point MACE $0.97 (0.56, 1.67)$ $1.09 (0.57, 2.09)$ $1.00 (0.97, 1.02)$ excluding all-cause $P = .90$ $P = .80$ $P = .93$ mortality 1 $0.61 (0.36, 1.03)$ $0.63 (0.34, 1.17)$ $1.00 (0.98, 1.02)$ All-cause mortality 1 $0.61 (0.36, 1.03)$ $0.63 (0.34, 1.17)$ $1.00 (0.98, 1.02)$ $P = .065$ $P = .14$ $P = .99$ Congestive cardiac 1 $1.08 (0.54, 2.15)$ $1.07 (0.46, 2.50)$ $0.99 (0.96, 1.02)$ failure $P = .83$ $P = .87$ $P = .59$ Coronary 1 $1.78 (0.42, 7.62)$ $1.37 (0.23, 8.29)$ $1.00 (0.91, 1.09)$	2)
excluding all-cause $P = .90$ $P = .80$ $P = .93$ mortality1 $0.61 (0.36, 1.03)$ $0.63 (0.34, 1.17)$ $1.00 (0.98, 1.02)$ All-cause mortality1 $0.61 (0.36, 1.03)$ $0.63 (0.34, 1.17)$ $1.00 (0.98, 1.02)$ $P = .065$ $P = .14$ $P = .99$ Congestive cardiac1 $1.08 (0.54, 2.15)$ $1.07 (0.46, 2.50)$ $0.99 (0.96, 1.02)$ failure $P = .83$ $P = .87$ $P = .59$ Coronary1 $1.78 (0.42, 7.62)$ $1.37 (0.23, 8.29)$ $1.00 (0.91, 1.09)$	
mortalityAll-cause mortality1 $0.61 (0.36, 1.03)$ $0.63 (0.34, 1.17)$ $1.00 (0.98, 1.02)$ $P = .065$ $P = .14$ $P = .99$ Congestive cardiac1 $1.08 (0.54, 2.15)$ $1.07 (0.46, 2.50)$ $0.99 (0.96, 1.02)$ failure $P = .83$ $P = .87$ $P = .59$ Coronary1 $1.78 (0.42, 7.62)$ $1.37 (0.23, 8.29)$ $1.00 (0.91, 1.09)$	2)
All-cause mortality1 $0.61 (0.36, 1.03)$ $0.63 (0.34, 1.17)$ $1.00 (0.98, 1.02)$ P = .065P = .14P = .99Congestive cardiac1 $1.08 (0.54, 2.15)$ $1.07 (0.46, 2.50)$ $0.99 (0.96, 1.02)$ failureP = .83P = .87P = .59Coronary1 $1.78 (0.42, 7.62)$ $1.37 (0.23, 8.29)$ $1.00 (0.91, 1.09)$	
P = .065 $P = .14$ $P = .99$ Congestive cardiac1 $1.08 (0.54, 2.15)$ $1.07 (0.46, 2.50)$ $0.99 (0.96, 1.02)$ failure $P = .83$ $P = .87$ $P = .59$ Coronary1 $1.78 (0.42, 7.62)$ $1.37 (0.23, 8.29)$ $1.00 (0.91, 1.09)$	
Congestive cardiac1 $1.08 (0.54, 2.15)$ $1.07 (0.46, 2.50)$ $0.99 (0.96, 1.02)$ failureP = .83P = .87P = .59Coronary1 $1.78 (0.42, 7.62)$ $1.37 (0.23, 8.29)$ $1.00 (0.91, 1.09)$	2)
failure $P = .83$ $P = .87$ $P = .59$ Coronary11.78 (0.42, 7.62)1.37 (0.23, 8.29)1.00 (0.91, 1.09)	
Coronary 1 1.78 (0.42, 7.62) 1.37 (0.23, 8.29) 1.00 (0.91, 1.09	2)
•	
revascularisation ⁺ $P = .43$ $P = .73$ $P = .96$	9)
Myocardial 1 1.42 (0.36, 5.54) 2.27 (0.47, 1.01 (0.97, 1.05	5)
infarction [#] $P = .62$ 10.88) $P = .31$ $P = .71$	
Ischaemic stroke 1 0.57 (0.15, 2.18) 0.81 (0.17, 3.82) 1.00 (0.94, 1.06	6)
P = .42 $P = .79$ $P = .95$	
Haem iron ^b $\leq 1.40 \text{mg/d}$ $1.41-2.10 \text{mg/d}$ $\geq 2.11 \text{mg/d}$ $+1 \text{mg/d}$	
Five-point MACE11.20 (0.75, 1.91)1.09 (0.60, 2.00)1.42 (1.05, 1.91)	1)
P = .45 $P = .78$ $P = .024$	
Four-point MACE1.17 (0.63, 2.18)1.14 (0.51, 2.53)1.53 (1.08, 2.17)	7)
excluding all-cause $P = .62$ $P = .75$ $P = .016$	
mortality	
All-cause mortality 1 1.35 (0.75, 2.40) 1.22 (0.58, 2.56) 1.51 (1.03, 2.22)	2)
P = .32 $P = .61$ $P = .036$	

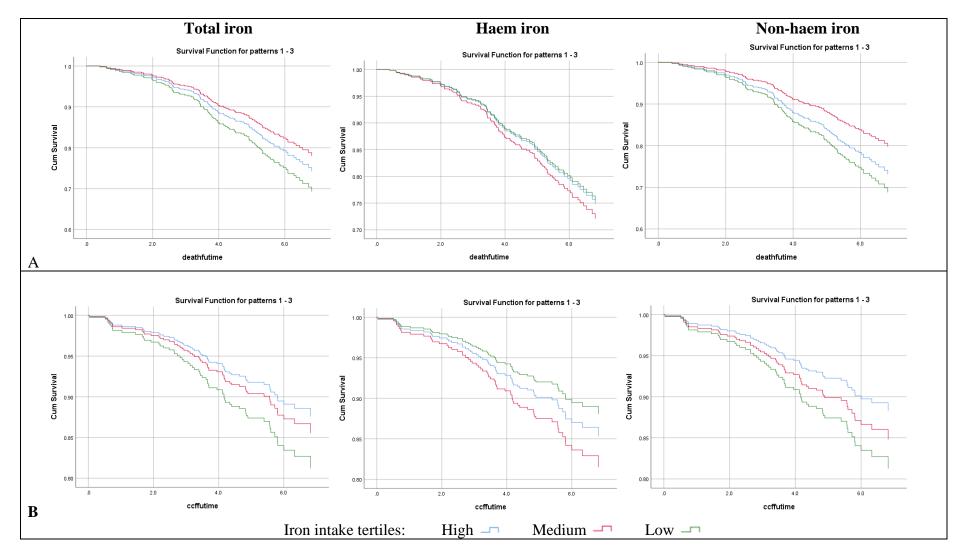
Congestive cardiac	1	2.88 (1.26, 6.60)	2.66 (0.92, 7.66)	2.10 (1.40, 3.16)
failure		P = .013	P = .070	P < .001
Coronary	1	0.59 (0.10, 3.49)	1.34 (0.20, 8.91)	2.80 (1.18, 6.60)
revascularisation ⁺		P = .56	P = .76	P = .019
Myocardial	1	0.43 (0.11, 1.68)	0.14 (0.01, 1.28)	0.58 (0.19, 1.75)
infarction [#]		P = .22	P = .081	P = .34
Ischaemic stroke	1	0.47 (0.12, 1.89)	0.41 (0.06, 2.67)	0.72 (0.24, 2.13)
		P = .29	P = .35	P = .55
Non-haem iron ^c	≤9.42mg/d	9.43-12.77mg/d	≥12.78mg/d	+1mg/d
Five-point MACE	1	0.75 (0.49, 1.15)	0.91 (0.55, 1.50)	0.98 (0.94, 1.03)
		P = .19	P = .71	P = .40
Four-point MACE		0.98 (0.56, 1.70)	1.12 (0.57, 2.22)	1.02 (0.96, 1.08)
excluding all-cause		P = .94	P = .75	P = .60
mortality				
All-cause mortality	1	0.57 (0.33,0.98)	0.70 (0.37, 1.33)	0.94 (0.88, 1.01)
		P = .043	P = .28	P = .071
Congestive cardiac	1	1.24 (0.62, 2.49)	1.01 (0.41, 2.49)	1.01 (0.93, 1.09)
failure		P = .54	P = .99	P = .90
Coronary	1	0.54 (0.12, 2.47)	1.16 (0.23, 5.89)	1.01 (0.84, 1.23)
revascularisation ⁺		P = .43	P = .86	P = .90
Myocardial	1	1.64 (0.44, 6.04)	1.76 (0.33, 9.27)	1.03 (0.92, 1.14)
infarction [#]		P = .46	P = .50	P = .65
Ischaemic stroke	1	0.69 (0.18, 2.68)	0.95 (0.19, 4.79)	0.96 (0.81, 1.13)
		P = .59	P = .95	P = .59

Notes: Adjusted for age (continuous), BMI (continuous), country of birth (Australia v. Greece/Italy v. other), age pension (only v. other), energy intake (continuous), number of serves of vegetables (continuous), fruit (continuous), meat/alternatives (continuous), grains (continuous), NSAID, anticoagulant, antiplatelet and/or PPI or H2RA use (NSAID, anticoagulant and/or antiplatelet only v. PPI and/or H2RA only v. NSAID, anticoagulant and/or antiplatelet only v. PPI and/or H2RA only v. NSAID, anticoagulant, PPI or H2RA v. neither NSAID, antiplatelet, anticoagulant, PPI or H2RA), haemoglobin (continuous), frailty status (robust v. pre-frail v. frail), and CKD (yes v.

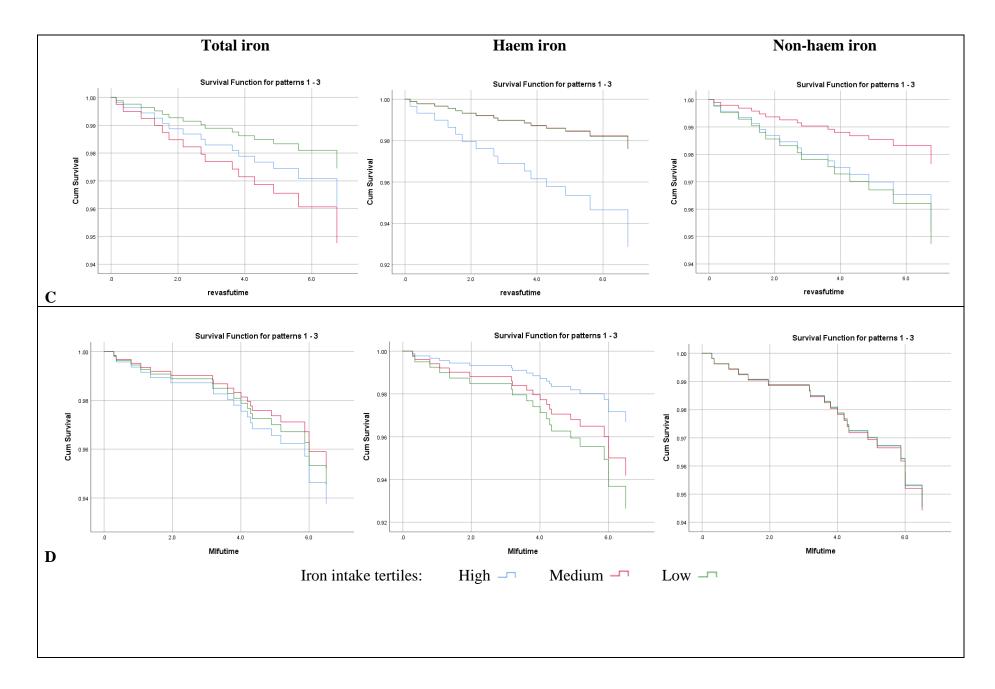
no), number of serves of red meat (continuous), poultry (continuous), processed meat (continuous), and seafood (continuous) (n = 516 for total, 160 five-point MACE, 92 four-point MACE excluding all-cause mortality, 106 all-cause mortality, 57 congestive cardiac failure and 17 stroke).

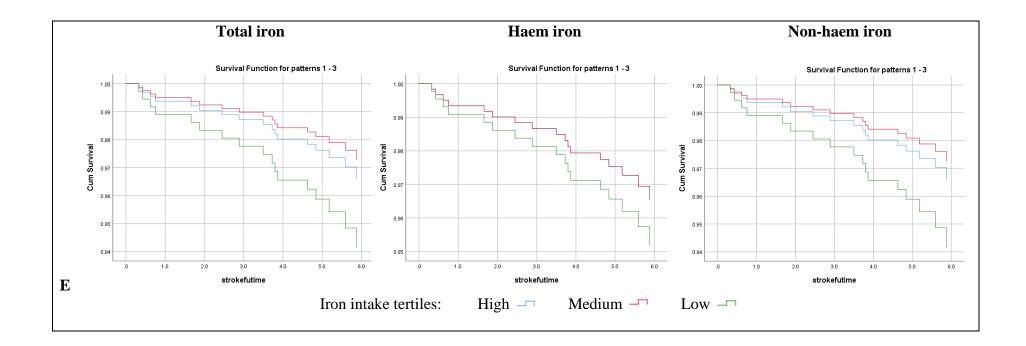

⁺Due to small numbers frailty status could not be included as covariates for coronary revascularisation (n = 516 for total and 15 coronary revascularisation).

[#]Due to small numbers NSAID, anticoagulant, antiplatelet, PPI and/or H2RA use could not be included as a covariate for myocardial infarction (n = 516 for total and 18 for myocardial infarction).

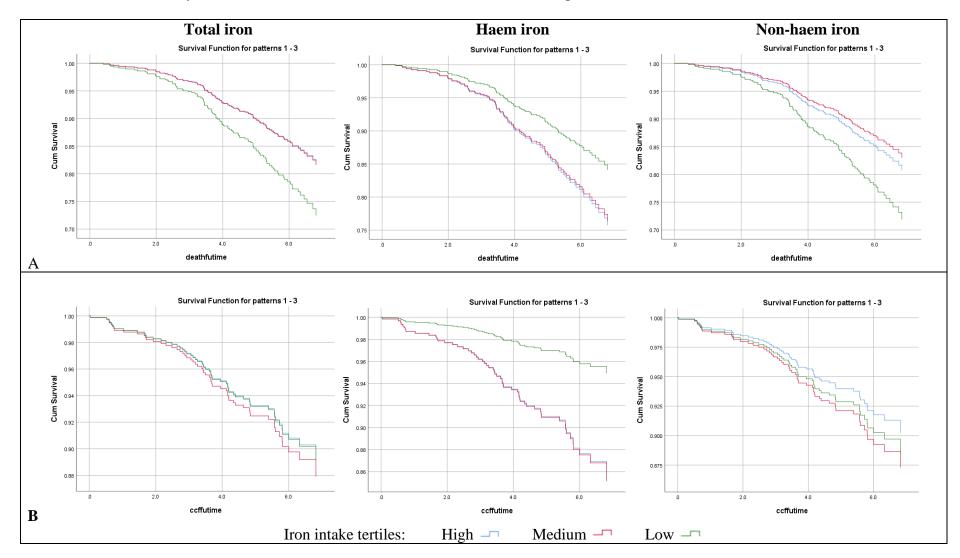

^a Bottom tertile ≤ 11.26 mg/d, n = 180 with median (IQR) 9.59 (8.24, 10.41); middle tertile 11.27-14.75 mg/d, n = 180 with median (IQR) 12.71 (11.92, 13.66); top tertile ≥ 14.76 mg/d, n = 179 with median (IQR) 17.64 (15.98, 20.13)

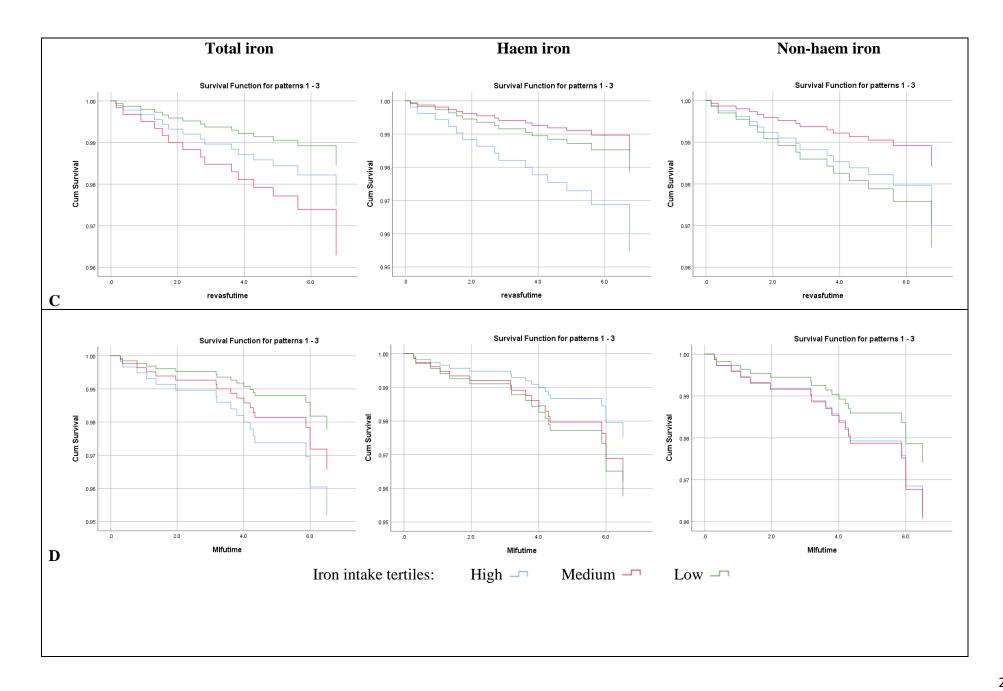
^b Bottom tertile $\leq 1.40 \text{ mg/d}$, n = 180 with median (IQR) 1.00 (0.75, 1.21); middle tertile 1.41-2.10 mg/d, n = 180 with median (IQR) 1.74 (1.58, 1.92); top tertile $\geq 2.11 \text{ mg/d}$, n = 179 with median (IQR) 2.65 (2.38, 3.14)

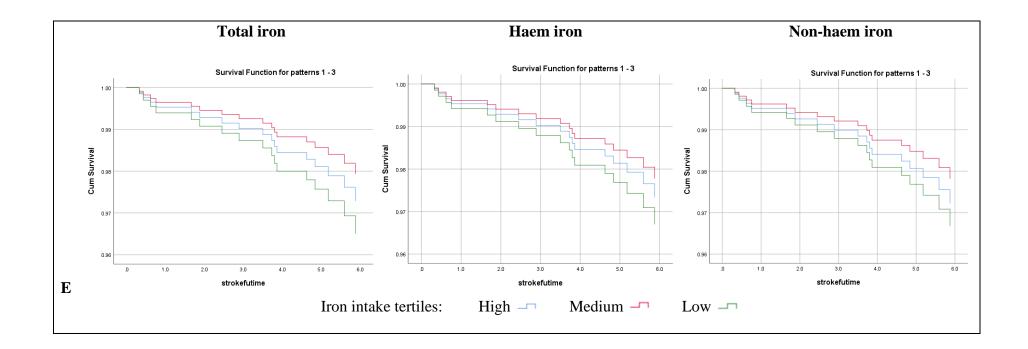

^c Bottom tertile $\leq 9.42 \text{ mg/d}$, n = 180 with median (IQR) 7.93 (6.72, 8.75); middle tertile 9.43-12.77mg/d, n = 180 with median (IQR) 10.86 (10.15, 11.62); top tertile $\geq 12.78 \text{ mg/d}$, n = 179, with median (IQR) 15.30 (13.81, 17.55) **Supplementary Figure 1.** Linear relationship between HI intake and MACE through plotting decile midpoints of HI intake versus decile beta coefficients from fully adjusted analyses: (A) five-point MACE; (B) four-point MACE excluding all-cause mortality.



Supplementary Figure 2. Survival free of individual endpoints of MACE unadjusted analyses: (A) all-cause mortality; (B) CCF; (C) coronary revascularisation; (D) MI; (E) stroke. MACE = major adverse cardiovascular event; CCF = congestive cardiac failure; revas = coronary revascularisation; MI = myocardial infarction; Cum = cumulative; Futime = follow-up time.




20



Supplementary Figure 3. Survival free of individual endpoints of MACE fully adjusted analyses: (A) all-cause mortality; (B) CCF; (C) coronary revascularisation; (D) MI; (E) stroke. MACE = major adverse cardiovascular event; CCF = congestive cardiac failure; revas = coronary revascularisation; MI = myocardial infarction; Cum = cumulative; Futime = follow-up time.

