Revisiting the \mathbf{J} shaped curve, exploring the association between

 cardiovascular risk factors and concurrent depressive symptoms in patients with cardiometabolic disease: Findings from a large cross-sectional study.
Supplement 2 - Linear Regression with HADS-D as Continuous Measure

Systolic Blood Pressure (SBP)- Linear Regression Analysis

Table 1: Title: Results of multiple linear regression for outcome of concurrent depressive symptoms (HADS-D) without extreme values for Systolic Blood Pressure. Legend: SBP: Systolic Blood Pressure. The table shows regression of analysed data after excluding extreme values for SBP ($\mathrm{SBP}<90 \mathrm{~mm} \mathrm{Hg}$ and $\mathrm{SBP}>240 \mathrm{~mm} \mathrm{Hg}$) with HADS-D as a continuous variable. HADS-D was transformed into square root (HADS-D) as it was not normally distributed.

	Regression 1- Analysed Data without extreme values $\mathbf{N}=\mathbf{3 2 0 2 9}$		
Variable	Regression co-efficient	p-value	Standard Error
SBP	-1.61	<0.001	2.94
SBP ^2	5.57	<0.001	1.06
Age Group(65-90)	-9.06	<0.001	1.16
Sex (Male)	-1.36	<0.001	1.08
Deprivation Status (Affluent)	-2.82	<0.001	1.11
Co-morbid Conditions			
Two	1.86	<0.001	1.29
Three	3.05	0.001	3.55

Diastolic Blood Pressure (DBP)-Linear Regression Analysis

Table 2: Title: Results of multiple linear regression for outcome of concurrent depressive symptoms (HADS-D) without extreme values for Diastolic Blood Pressure. Legend: DBP: Diastolic Blood Pressure. The table shows the regression of analysed data after excluding extreme values for DBP (DBP $<50 \mathrm{~mm} \mathrm{Hg}$ and DBP $>130 \mathrm{~mm} \mathrm{Hg}$) with HADS-D as a continuous variable. HADS-D was transformed into square root (HADS-D) as it was not normally distributed.

	Regression 2- Analysed Data without extreme values $\mathbf{N}=\mathbf{3 1 9 7 2}$		
Variable	Regression co-efficient	p-value	Standard Error
DBP	-1.90	<0.001	5.10
DBP ^2	1.21	<0.001	3.33
Age Group(65-90)	-9.66	<0.001	1.19
Sex (Male)	-1.35	<0.001	1.08
Deprivation Status (Affluent)	-2.83	<0.001	1.11
Co-morbid Conditions			
Two	1.86	<0.001	1.29
Three	3.03	<0.001	3.57

Total Cholesterol-Linear Regression Analysis

Table 3: Title: Results of multiple linear regression for outcome of concurrent depressive symptoms (HADS-D) without extreme values for Total Cholesterol. Legend: The table shows the regression of analysed data after excluding extreme values for Total Cholesterol (Total Cholesterol < $2 \mathrm{mmol} / \mathrm{l}$ and Total Cholesterol > $10 \mathrm{mmol} / \mathrm{l}$) with HADS-D as a continuous variable. HADS-D was transformed into square root (HADS-D) as it was not normally distributed. Total Cholesterol was log transformed as it was not normally distributed.

	Regression 3- Analysed Data without extreme values $\mathbf{N = 3 1 2 4 4}$		
Variable	Regression co-efficient	p-value	Standard Error
Log (total cholesterol)	-0.90	<0.001	0.19
Log (total cholesterol) ^2	0.35	<0.001	0.06
Age Group(65-90)	-0.07	<0.001	0.01
Sex (Male)	-0.12	<0.001	0.01
Deprivation Status (Affluent)	-0.28	<0.001	0.01
Co-morbid Conditions		<0.001	0.01
Two	0.19	<0.001	0.03
Three	0.32		

Body Mass Index-Linear Regression Analysis

Table 4: Title: Results of multiple linear regression for outcome of concurrent depressive symptoms (HADS-D) without extreme values for Body Mass Index. Legend: BMI: Body Mass Index. The table shows the regression of analysed data after excluding extreme values for BMI (BMI $<15 \mathrm{~kg} / \mathrm{m} 2$ and BMI > $55 \mathrm{~kg} / \mathrm{m} 2$) with HADS-D as a continuous variable. HADS-D was transformed into square root (HADS-D) as it was not normally distributed. BMI was log transformed as it was not normally distributed.

	Regression 4- Analysed Data without extreme values $\mathbf{N = 3 0 0 4 2}$		
Variable	Regression co-efficient	p -value	Standard Error
Log (BMI)	-9.51	<0.001	0.67
Log (BMI)^2	1.41	<0.001	0.10
Age Group(65-90)	-0.08	<0.001	0.01
Sex (Male)	-0.11	<0.001	0.01
Deprivation Status (Affluent) Co-morbid Conditions Two	0.27	<0.001	0.01
Three	0.33		

HbA1c-Linear Regression Analysis

Table 5: Title: Results of multiple linear regression for outcome of concurrent depressive symptoms (HADS-D) without extreme values for HbA1c. Legend: The table shows the regression of analysed data after excluding extreme values HbA1c (HbA1c < 3 DCCT and HbA1c>18 DCCT). Regression 5 b shows results of data including extreme values with HADS-D as a continuous variable. HADS-D was transformed into square root (HADS-D) as it was not normally distributed. HbA1c was log transformed as it was not normally distributed.

	Regression 5- Analysed Data without extreme values $\mathbf{N}=\mathbf{1 5 6 7 6}$		
Variable	Regression co-efficient	p-value	Standard Error
Log(HbA1c)	-2.13	<0.001	0.55
Log (HbA1c) 22	0.55	<0.001	0.13
Age Group(65-90)	-0.07	<0.001	0.01
Sex (Male)	-0.12	<0.001	0.01
Deprivation Status (Affluent)	-0.25	<0.001	0.01
Co-morbid Conditions			
Two	0.24	<0.001	0.01
Three	0.40	<0.001	0.03

