Derivation of approximate hazard function

We assume the time from patient record creation, $t=0$, to patient arrival, $t=T$, is distributed according to an approximate hazard function,

$$
\lambda_{d}(t)=\frac{P(t \leq T<t+d \mid t \leq T)}{d}
$$

We will not use the actual instantaneous hazard function, which is obtained by taking the limit d->0. Rather we use $\lambda_{1}(\mathrm{t}), \lambda_{2}(\mathrm{t})$ and $\lambda_{3}(\mathrm{t})$, denoting the probability of arrival within 1,2 and 3 hours respectively, given that the patient had not having arrived at time t.

Now assume $n(t)$ patients had records created, but were not arrived at time t, with time of record creation being $\tau_{1}, \tau_{2}, \ldots, \tau_{n(t)}$ respectively. The expected number of arrivals would be the sum of the approximate hazard functions, translated to the correct origin,

$$
E[\text { Arrivals within d hours }]=\lambda_{d}\left(t-\tau_{1}\right)+\lambda_{d}\left(t-\tau_{2}\right)+\cdots+\lambda_{d}\left(t-\tau_{n(t)}\right)
$$

If the hazard function is approximated by a truncated polynomial of degree m,

$$
\lambda_{d}(t) \approx a+b t+c t^{2}
$$

then,

$$
E[\text { Arrivals within d hours }] \approx \mathrm{a} \cdot \mathrm{n}(\mathrm{t})+\mathrm{b} \sum_{j=1}^{n(t)}\left(t-\tau_{j}\right)+\mathrm{c} \sum_{j=1}^{n(t)}\left(t-\tau_{j}\right)^{2}
$$

