Appendix B

Let $n_{i j 0}$ denote the number in risk group $i(i=1,2, \ldots, k)$ and $\operatorname{arm} j(j=0=$ placebo, $j=1=$ tamoxifen) without invasive breast cancer. Let $n_{i j 1}$ denote the total number in risk group i and arm j with invasive breast cancer. The likelihood kernal for the general formulation is

$$
\begin{aligned}
L=\prod_{i} & (1-p r(\text { invasive breast cancer } \mid \text { placebo, group } i))^{n_{i 00}} \\
& \times \operatorname{pr}(\text { invasive breast cancer } \mid \text { placebo, group } i)^{n_{i 01}} \\
& \times(1-p r(\text { invasive breast cancer } \mid \text { tamoxifen, group } i))^{n_{i 10}} \\
& \times \operatorname{pr}(\text { invasive breast cancer } \mid \text { tamoxifen, group } i)^{n_{i 11}}
\end{aligned}
$$

Recall that $\pi_{i}=p r$ (invasive breast cancer \mid placebo, group $\left.i\right)$. Let δ denote the absolute risk difference which is constant over risk groups. The kernel of the log-likelihood for the Constant $R D$ model is

$$
\begin{aligned}
L_{\text {ConstantRD }}\left(\pi_{i}, \delta\right)= & \sum_{i=1}^{k} n_{i 00} \log \left(1-\pi_{i}\right)+\sum_{i=1}^{k} n_{i 01} \log \left(\pi_{i}\right) \\
& +\sum_{i=1}^{k} n_{i 10} \log \left(1-\pi_{i}+\delta\right)+\sum_{i=1}^{k} n_{i 11} \log \left(\pi_{i}-\delta\right) .
\end{aligned}
$$

Let β denote the relative risk which is constant over risk groups. The kernel of the loglikelihood for the Constant $R R$ model is

$$
\begin{aligned}
L_{\text {ConstantRR }}\left(\pi_{i}, \beta\right) & =\sum_{i=1}^{k} n_{i 00} \log \left(1-\pi_{i}\right)+\sum_{i=1}^{k} n_{i 01} \log \left(\pi_{i}\right) \\
& +\sum_{i=1}^{k} n_{i 10} \log \left(1-\pi_{i} / \beta\right)+\sum_{i=1}^{k} n_{i 11} \log \left(\pi_{i} / \beta\right)
\end{aligned}
$$

The above log-likelihoods were maximized using a Newton-Raphson algorithm with starting values of $\pi_{i}=n_{i 11} / n_{i 1+}, \delta=\Sigma_{i}\left(n_{i 01} / n_{i 0+}-n_{i 11} / n_{i 1+}\right) / k$, and $\beta=\Sigma_{i}\left(\left(n_{i 01} / n_{i 0+}\right) /\left(n_{i 11} / n_{i 1+}\right)\right) / k$, where " + " indicates summation over the indicated subscript. Confidence intervals are based on the asymptotic variance computed via the observed information matrix.

For the full model the estimates are $\widehat{\delta}_{i}=n_{i 01} / n_{i 0+}-n_{i 11} / n_{i 1+}$ and $\widehat{\beta}_{i}=\left(n_{i 01} / n_{i 0+}\right)$ / ($\left.n_{i 11} / n_{i 1+}\right)$. Confidence intervals are based on the asymptotic variance for binomial distritubutions. The maximized log-likelihood for both Varying $R D$ and Varying $R R$ models is

$$
\begin{aligned}
& L_{\text {VaryingRD }}\left(\widehat{\pi}_{i}, \widehat{\delta}_{i}\right)=L_{V \text { aryingRR }}\left(\widehat{\pi}_{i}, \widehat{\beta}_{i}\right)= \\
& \quad \sum_{i=1}^{k} n_{i 00} \log \left(n_{i 00} / n_{i 0+}\right)+\sum_{i=1}^{k} n_{i 01} \log \left(n_{i 01} / n_{i 0+}\right) \\
& + \\
& +\sum_{i=1}^{k} n_{i 10} \log \left(n_{i 10} / n_{i 1+}\right)+\sum_{i=1}^{k} n_{i 11} \log \left(n_{i 11} / n_{i 1+}\right)
\end{aligned}
$$

Based on an asymptotic chi-squared distribution, p-values for comparing models are computed for $2\left(L_{\text {VaryingRD }}\left(\widehat{\pi}_{i}, \widehat{\delta}_{i}\right)-L_{\text {ConstantRD }}\left(\widehat{\pi}_{i}, \widehat{\delta}\right)\right)$ and $2\left(L_{\text {VaryingRR }}\left(\widehat{\pi}_{i}, \widehat{\beta}_{i}\right)\right.$ $\left.-L_{\text {ConstantRD }}\left(\widehat{\pi}_{i}, \widehat{\beta}\right)\right)$.

