Sampling for the baseline hazard (step function approach)
The integral in the likelihood contribution of the i-th observation can be written as
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This is not a GMRF because of the term exp(hy). But this term can be approximated in a neighborhood

of hy, as
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This gives the following GMRF as the proposal density
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One can sample easily from (5), see Rue 2001 [25]. One has to compute the band Cholesky decomposition
of the precision matrix Q = LL’, to solve Lv = b, L’ = v and L'y = z, where z is a vector of

independent standard Gaussian variables. The sample is the sum x = p +y.



Z(h) is the normalizing constant which depends on h by the coefficients {C;}. The acceptance probability

for the Metropolis-Hastings step is min(1, R), where

_ m(h’|B, 70, 71, Data) g(h[h’)

R =
ﬂ-(h|/37 T0,T1, Data) q(h/|h)

(8)

To improve the performance of the Metropolis-Hastings step it is recommended not to use the Taylor
expansion around hy in equation (4) but to provide an overall good fit to the full conditional for h in the

region where h’ is expected to be located. Therefore one can use the approximation given by
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where d is a crude guess of the step length of hy to hj.



