Sampling for the baseline hazard (step function approach)

The integral in the likelihood contribution of the i-th observation can be written as

$$
\begin{equation*}
\int_{0}^{t_{i}} \exp [h(s)] \mathrm{d} s=\sum_{k=1}^{K} \exp h\left(\theta_{k-1}\right)\left[t_{i} \wedge \theta_{k}-t_{i} \wedge \theta_{k_{1}}\right] \tag{1}
\end{equation*}
$$

where $t \wedge s=\min \{t, s\}$. The total likelihood of the n observations is given by

$$
\begin{align*}
& \prod_{i=1}^{n} \lambda_{0}\left(t_{i} \mid \mathbf{x}_{i}\right)^{\delta_{i}} S\left(t_{i} \mid \mathbf{x}_{i}\right) \tag{2}\\
& =\exp \left\{\sum_{i=1}^{n}\left\{\delta_{i}\left[h\left(t_{i}\right)+\boldsymbol{\beta}^{\prime} \mathbf{x}\right]-\mathrm{e}^{\boldsymbol{\beta}^{\prime} \mathbf{x}} \sum_{k=1}^{K} \exp h\left(\theta_{k-1}\right)\left[t \wedge \theta_{k}-t \wedge \theta_{k_{1}}\right]\right\}\right\}
\end{align*}
$$

The posterior of \mathbf{h} is

$$
\begin{align*}
& \pi\left(\mathbf{h} \mid \boldsymbol{\beta}, \tau_{0}, \tau_{1}, \text { Data }\right) \propto \exp \left\{-\frac{1}{2} \mathbf{h}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{h}\right. \tag{3}\\
& \left.+\sum_{i=1}^{n}\left[\delta_{i} \sum_{k=1}^{K} h_{k} \mathrm{I}_{\left[\theta_{k-1}, \theta_{k}\right)}\left(t_{i}\right)-\exp \left\{\boldsymbol{\beta}^{\prime} \mathbf{x}_{i}\right\} \sum_{k=1}^{K} \exp \left(h_{k}\right)\left[t_{i} \wedge \theta_{k}-t_{i} \wedge \theta_{k-1}\right]\right]\right\}
\end{align*}
$$

This is not a GMRF because of the term $\exp \left(h_{k}\right)$. But this term can be approximated in a neighborhood of h_{k} as

$$
\begin{equation*}
\exp \left(h_{k}^{\prime}\right) \approx A_{i}+B_{i} h_{k}^{\prime}+\frac{1}{2} C_{i} h_{k}^{\prime 2} \tag{4}
\end{equation*}
$$

This gives the following GMRF as the proposal density

$$
\begin{align*}
& q\left(\mathbf{h}^{\prime} \mid \mathbf{h}\right) \propto \frac{1}{Z(\mathbf{h})} \exp \left\{-\frac{1}{2} \mathbf{h}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{h}+\sum_{i=1}^{n}\left[\delta_{i} \sum_{k=1}^{K} h_{k} \mathrm{I}_{\left[\theta_{k-1}, \theta_{k}\right)}\left(t_{i}\right)\right.\right. \\
& \left.\left.\quad-\exp \left\{\boldsymbol{\beta}^{\prime} \mathbf{x}_{i}\right\} \sum_{k=1}^{K}\left(B_{i} h_{k}^{\prime}+\frac{1}{2} C_{i} h_{k}^{\prime 2}\right)\left[t_{i} \wedge \theta_{k}-t_{i} \wedge \theta_{k-1}\right]\right]\right\} \\
& =\exp \left\{-\frac{1}{2} \mathbf{h}^{\prime} \mathbf{Q} \mathbf{h}+\mathbf{b}^{\prime} \mathbf{h}\right\} \tag{5}
\end{align*}
$$

with

$$
\begin{align*}
& \mathbf{b}=\left(\sum_{i=1}^{n}\left[\delta_{i} \mathrm{I}_{\left[\theta_{k-1}, \theta_{k}\right)}\left(t_{i}\right)-\exp \left\{\boldsymbol{\beta}^{\prime} \mathbf{x}_{i}\right\} B_{i}\left[t_{i} \wedge \theta_{k}-t_{i} \wedge \theta_{k-1}\right]\right]\right)_{k=1, \ldots, K} \tag{6}\\
& \mathbf{Q}=\operatorname{diag}\left(-\sum_{i=1}^{n} \exp \left\{\boldsymbol{\beta}^{\prime} \mathbf{x}_{i}\right\} C_{i}\left[t_{i} \wedge \theta_{k}-t_{i} \wedge \theta_{k-1}\right]\right)-\boldsymbol{\Sigma}^{-1} \tag{7}
\end{align*}
$$

One can sample easily from (5), see Rue 2001 [25]. One has to compute the band Cholesky decomposition of the precision matrix $\mathbf{Q}=\mathbf{L L}^{\prime}$, to solve $\mathbf{L v}=\mathbf{b}, \mathbf{L}^{\prime} \boldsymbol{\mu}=\mathbf{v}$ and $\mathbf{L}^{\prime} \mathbf{y}=\mathbf{z}$, where \mathbf{z} is a vector of independent standard Gaussian variables. The sample is the sum $\mathbf{x}=\boldsymbol{\mu}+\mathbf{y}$.
$Z(\mathbf{h})$ is the normalizing constant which depends on \mathbf{h} by the coefficients $\left\{C_{i}\right\}$. The acceptance probability for the Metropolis-Hastings step is $\min (1, R)$, where

$$
\begin{equation*}
R=\frac{\pi\left(\mathbf{h}^{\prime} \mid \boldsymbol{\beta}, \tau_{0}, \tau_{1}, \text { Data }\right)}{\pi\left(\mathbf{h} \mid \boldsymbol{\beta}, \tau_{0}, \tau_{1}, \text { Data }\right)} \frac{q\left(\mathbf{h} \mid \mathbf{h}^{\prime}\right)}{q\left(\mathbf{h}^{\prime} \mid \mathbf{h}\right)} \tag{8}
\end{equation*}
$$

To improve the performance of the Metropolis-Hastings step it is recommended not to use the Taylor expansion around h_{k} in equation (4) but to provide an overall good fit to the full conditional for \mathbf{h} in the region where \mathbf{h}^{\prime} is expected to be located. Therefore one can use the approximation given by

$$
\begin{equation*}
\left(A_{i}, B_{i}, C_{i}\right)=\arg \min \left[\int_{h_{k}-d}^{h_{k}+d}\left\{\exp \left(h_{k}^{\prime}\right)-\left(A_{i}+B_{i} h_{k}^{\prime}+\frac{1}{2} C_{i} h_{k}^{\prime 2}\right)\right\}^{2} \mathrm{~d} h_{k}^{\prime}\right] \tag{9}
\end{equation*}
$$

where d is a crude guess of the step length of h_{k} to h_{k}^{\prime}.

