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EM with Measurement Errors Only:

1) Linear regression

First note that θ = (θ1,θ2,θ3) where θ1 = (β0,β1,σ
2
ε ), θ2 = σ2

η and θ3 = (µ,σ2
b ). The E-Step of the tth

iteration of the EM procedure gives
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In M-Step, we need to maximize Q(θ |θ (t)) under the constraints µ1 ≤ µ2 ≤ ·· · ≤ µG. For this, note first the

conditional variable (Xgi|ygi,wgi) follows N(mx(ygi,wgi;θ),vx(θ)), where

mx(ygi,wgi;θ) =
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Let m̄g =
1
ng

∑
ng
i=1 mx(ygi,wgi;θ (t)),g = 1, · · · ,G, m̄ = 1

∑
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g=1 ng

∑
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g=1 ng
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G
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i=1 ygi. Then,

the solution to this maximization problem can be found and updated as follows:

µ(t+1) = isotonic regression of (m̄1, m̄2, · · · , m̄G)
′ with weight vector (n1,n2, · · · ,nG)

′,

∗Corresponding author: hmkim@ucalgary.ca, Office: (403) 220-5691, Fax: (403) 282-5150: Department of Mathematics and

Statistics, The University of Calgary, 2500 University Drive N.W. Calgary, Alberta, Canada T2N 1N4

1



β
(t+1)
1 =

∑
G
g=1 ∑

ng
i=1[mx(ygi,wgi;θ (t))−m̄]ygi

∑
G
g=1 ∑

ng
i=1[mx(ygi,wgi;θ (t))−m̄]2

,

β
(t+1)
0 = ȳ−β
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If we keep updating estimates by this EM algorithm, then θ (t) will converge the true MLE of θ . Note that

no Monte Carlo method is necessary for the simple linear case.

2) Logistic regression

Parameters in the logistic regression model are θ1 = (β0,β1), θ2 = σ2
η and θ3 = (µ,σ2

b ). As in the simple

linear case, σ2
η is assumed to be known. The E step for this model gives

Q(θ |θ (t)) = E
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In fact, the third term of Q(θ |θ (t)) is constant because σ2
η is known. Since the conditional density of Xgi

given Ygi = ygi and Wgi = wgi is
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), conditional expectations in Q(θ |θ (t)) do

not have closed form of expressions. Thus, a Monte-Carlo EM method is used as is generally the case in

many similar situations. The outline of the M-Step in the (t + 1)st iteration of the EM algorithm can be

described as follows:

Step 1: Set µ(t+1) equal to the isotonic regression of (m̄1, · · · , m̄G)
′ with weight vector (n1, · · · ,nG)

′, where
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Step 2: Keeping θ (t) in the conditional distribution, apply a usual Newton method to maximize Q(θ |θ (t))

with respect to β until a convergence criterion is satisfied. And set β
(t+1) equal to the solution.
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It should be noted that the Newton method in Step 2 can be applied simply to the second term in Q(θ |θ (t))

because all other conditional expectations do not involve β .

EM with Measurement Errors and Missing in Covariate:

1) Linear regression

In this case, Q1(θ |θ (t)) is the same as (4) while Q2(θ |θ (t)) is given by
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Recall first (Xgi|ygi,wgi) follows N(mx(ygi,wgi;θ),vx(θ)). Also note that (X∗gi,W
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Similarly to the case without missing, let mg = 1
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2) Logistic regression

Based on observations having missing values in covariate, the second term of Q(θ |θ (t)) for this model is
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expressed as
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In order to maximize Q(θ |θ (t)), we need a Newton method as a part of each EM procedure. However, our

investigations indicate that it does not take too long time to reach a convergence criterion. Considering (2)

and (4), the M-Step can be summarized as follows:

Step 1: Set µ(t+1) equal to the isotonic regression of (m̄1, · · · , m̄G)
′ with weight vector (n1 +n∗1, · · · ,nG +
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Step 2: Keeping θ (t) in the conditional distributions, plug µ(t+1) and σ2
b
(t+1) into Q(θ |θ (t)) and apply a

usual Newton method to maximize Q(θ |θ (t)) with respect to β . Set β
(t+1) equal to the solution.

As mentioned earlier, the conditional expectations here do not have closed form of expressions, and thus we

rely on a Monte Carlo method to evaluate them.
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