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Supplementary Material

EM with Measurement Errors Only:

1) Linear regression
First note that 8 = (6;,6,,6;) where 8; = (B, B1,02), 6 = G and 6; = (u,crbz). The E-Step of the ¢th

iteration of the EM procedure gives

0(8]6Y) = Egu[l(6:Y,W,X)|y,w]
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In M-Step, we need to maximize Q(G!O(t)) under the constraints t; < up < --- < Ug. For this, note first the

conditional variable (Xg;|yei, wei) follows N(my(yei, weis 0),vx(0)), where
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Let mg = iz;lilmx(yghwgi;e([))ag = 17' o aG’ m= ﬁzgzl ngn_/lga andy = ﬁzg:l Z?i]ygi- Then,

the solution to this maximization problem can be found and updated as follows:

u(+1) = isotonic regression of (i1, iy, - - ,/mg) with weight vector (ny,n,--- ,ng)’,
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If we keep updating estimates by this EM algorithm, then 6(") will converge the true MLE of 6. Note that

no Monte Carlo method is necessary for the simple linear case.

2) Logistic regression
Parameters in the logistic regression model are 6, = (S, B), 6, = and 6; = (1,07). As in the simple

linear case, 02

7 is assumed to be known. The E step for this model gives

0(8]6Y) = Egu[l(6:Y,W,X)y,w]
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In fact, the third term of Q(G!O )} is constant because Gn is known. Since the conditional density of Xg;

given Yy = yg; and Wy; = wy; is
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where /1(xgi; Wgi, Wi, OF, Oy2) is the p.d.f of N( ), conditional expectations in Q(0]6()) do
not have closed form of expressions. Thus, a Monte-Carlo EM method is used as is generally the case in
many similar situations. The outline of the M-Step in the (¢ + 1)st iteration of the EM algorithm can be

described as follows:

Step 1: Set u(*+1) equal to the isotonic regression of (i ,- - - , ’G)’ with weight vector (nj,--- ,ng)’, where
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similarly.

Step 2: Keeping 0) in the conditional distribution, apply a usual Newton method to maximize 0(6] ol ))

(t+1)

with respect to 8 until a convergence criterion is satisfied. And set [3 equal to the solution.



It should be noted that the Newton method in Step 2 can be applied simply to the second term in Q(6|0"))

because all other conditional expectations do not involve f3.
EM with Measurement Errors and Missing in Covariate:

1) Linear regression

In this case, Q1 (0]6")) is the same as (4) while Q»(8|0®)) is given by
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Recall first (Xgi[ygi, wgi) follows N(my(ygi, wgis 0),vx(0)). Also note that (Xg;, We;yg;) follows a bivariate
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(3), we can establish the EM algorithm that updates estimates as follows:
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2) Logistic regression

Based on observations having missing values in covariate, the second term of Q(6|0()) for this model is



expressed as
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In order to maximize Q(6|0®)), we need a Newton method as a part of each EM procedure. However, our
investigations indicate that it does not take too long time to reach a convergence criterion. Considering (2))

and (@), the M-Step can be summarized as follows:

Step 1: Set u"*1) equal to the isotonic regression of (7fy,--- , i) with weight vector (nj +n%,--- ,ng +
* o n* * >k
ng)', where mg = ﬁ{z?ﬁl Ee 0 Xeilvei, weil + X5 1 Egu [X, ]ygl}} Then, compute
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larly.
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Step 2: Keeping 8) in the conditional distributions, plug 1) and o7 into 0(6]6®)) and apply a

(t4+1)

usual Newton method to maximize Q(6]6()) with respect to . Set ﬁ equal to the solution.

As mentioned earlier, the conditional expectations here do not have closed form of expressions, and thus we

rely on a Monte Carlo method to evaluate them.



