Estimation Methods with Ordered Covariate Subject to Measurement Error and Missingness in Semi-Ecological Design

by
Hyang-Mi KIM ${ }^{1 *}$ Chul Gyu PARK ${ }^{2}$ Martie van TONGEREN ${ }^{3}$ Igor BURSTYN ${ }^{4}$

Supplementary Material

EM with Measurement Errors Only:

1) Linear regression

First note that $\theta=\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ where $\theta_{1}=\left(\beta_{0}, \beta_{1}, \sigma_{\varepsilon}^{2}\right), \theta_{2}=\sigma_{\eta}^{2}$ and $\theta_{3}=\left(\mu, \sigma_{b}^{2}\right)$. The E-Step of the t th iteration of the EM procedure gives

$$
\begin{align*}
Q\left(\theta \mid \theta^{(t)}\right) & =E_{\theta^{(t)}}\left[l_{c}(\theta ; \mathbf{Y}, \mathbf{W}, \mathbf{X}) \mid \mathbf{y}, \mathbf{w}\right] \\
& =-\frac{1}{2}\left(\sum_{g=1}^{G} n_{g}\right)\left(\ln \sigma_{\eta}^{2}+\ln \sigma_{b}^{2}+\ln \sigma_{\varepsilon}^{2}\right)-\frac{1}{2 \sigma_{\varepsilon}^{2}} \sum_{g=1}^{G} \sum_{i=1}^{n_{g}} E_{\theta^{(t)}}\left[\left(Y_{g i}-\beta_{0}-\beta_{1} X_{g i}\right)^{2} \mid y_{g i}, w_{g i}\right] \\
& -\frac{1}{2 \sigma_{\eta}^{2}} \sum_{g=1}^{G} \sum_{i=1}^{n_{g}} E_{\theta^{(t)}}\left[\left(W_{g i}-X_{g i}\right)^{2} \mid y_{g i}, w_{g i}\right]-\frac{1}{2 \sigma_{b}^{2}} \sum_{g=1}^{G} \sum_{i=1}^{n_{g}} E_{\theta^{(t)}}\left[\left(X_{g i}-\mu_{g}\right)^{2} \mid y_{g i}, w_{g i}\right] \tag{1}
\end{align*}
$$

In M-Step, we need to maximize $Q\left(\theta \mid \theta^{(t)}\right)$ under the constraints $\mu_{1} \leq \mu_{2} \leq \cdots \leq \mu_{G}$. For this, note first the conditional variable $\left(X_{g i} \mid y_{g i}, w_{g i}\right)$ follows $N\left(m_{x}\left(y_{g i}, w_{g i} ; \theta\right), v_{x}(\theta)\right)$, where

$$
m_{x}\left(y_{g i}, w_{g} ; \theta\right)=\frac{\beta_{1} \sigma_{b}^{2} \sigma_{\eta}^{2}\left(y_{g i}-\beta_{0}\right)+\left(\sigma_{\varepsilon}^{2} \sigma_{\eta}^{2}\right) w_{g i}+\sigma_{\varepsilon}^{2} \sigma_{\eta}^{2} \mu_{g}}{\beta_{1}^{2} \sigma_{b}^{2} \sigma_{\eta}^{2}+\sigma_{\varepsilon}^{2}\left(\sigma_{b}^{2}+\sigma_{\eta}^{2}\right)} \quad \text { and } \quad v_{x}(\theta)=\frac{\sigma_{\varepsilon}^{2} \sigma_{b}^{2} \sigma_{\eta}^{2}}{\beta_{1}^{2} \sigma_{b}^{2} \sigma_{\eta}^{2}+\sigma_{\varepsilon}^{2}\left(\sigma_{b}^{2}+\sigma_{\eta}^{2}\right)} .
$$

Let $\bar{m}_{g}=\frac{1}{n_{g}} \sum_{i=1}^{n_{g}} m_{x}\left(y_{g i}, w_{g i} ; \boldsymbol{\theta}^{(t)}\right), g=1, \cdots, G, \bar{m}=\frac{1}{\sum_{g=1}^{G} n_{g}} \sum_{g=1}^{G} n_{g} \bar{m}_{g}$, and $\bar{y}=\frac{1}{\sum_{g=1}^{G} n_{g}} \sum_{g=1}^{G} \sum_{i=1}^{n_{g}} y_{g i}$. Then, the solution to this maximization problem can be found and updated as follows:

$$
\mu^{(t+1)}=\text { isotonic regression of }\left(\bar{m}_{1}, \bar{m}_{2}, \cdots, \bar{m}_{G}\right)^{\prime} \text { with weight vector }\left(n_{1}, n_{2}, \cdots, n_{G}\right)^{\prime},
$$

[^0]\[

$$
\begin{aligned}
& \beta_{1}^{(t+1)}=\frac{\sum_{g=1}^{G} \sum_{i=1}^{n_{j}}\left[m_{x}\left(y_{g i}, w_{g i} ; ;^{(t)}\right)-\bar{m}\right] y_{g i}}{\sum_{g=1}^{G} \Sigma_{i=1}^{n} n_{x}\left(m_{x}\left(y_{g i}, w_{g} i \theta^{(t)}\right)-\bar{m}\right]^{2}}, \\
& \beta_{0}^{(t+1)}=\bar{y}-\beta_{1}^{(t+1)} \bar{m}, \\
& \sigma_{b}^{2(t+1)}=\frac{1}{\sum_{g=1}^{G} n_{g}} \sum_{g=1}^{G} \sum_{i=1}^{n_{g}}\left[m_{x}\left(y_{g i}, w_{g i} ; \theta^{(t)}\right)-\mu_{g}^{(t+1)}\right]^{2}+v_{x}\left(\theta^{(t)}\right), \\
& \sigma_{\varepsilon}^{2(t+1)}=\frac{1}{\Sigma_{g=1}^{G} n_{g}} \sum_{g=1}^{G} \sum_{i=1}^{n_{g}}\left[y_{g i}-\beta_{0}^{(t+1)}-\beta_{1}^{(t+1)} m_{x}\left(y_{g i}, w_{g i} ; \theta^{(t)}\right)\right]^{2}+v_{x}\left(\theta^{(t)}\right) .
\end{aligned}
$$
\]

If we keep updating estimates by this EM algorithm, then $\theta^{(t)}$ will converge the true MLE of θ. Note that no Monte Carlo method is necessary for the simple linear case.

2) Logistic regression

Parameters in the logistic regression model are $\theta_{1}=\left(\beta_{0}, \beta_{1}\right), \theta_{2}=\sigma_{\eta}^{2}$ and $\theta_{3}=\left(\mu, \sigma_{b}^{2}\right)$. As in the simple linear case, σ_{η}^{2} is assumed to be known. The E step for this model gives

$$
\begin{align*}
Q\left(\boldsymbol{\theta} \mid \boldsymbol{\theta}^{(t)}\right) & =E_{\boldsymbol{\theta}^{(t)}}\left[l_{c}(\boldsymbol{\theta} ; \mathbf{Y}, \mathbf{W}, \mathbf{X}) \mid \mathbf{y}, \mathbf{w}\right] \\
& =-\frac{1}{2}\left(\sum_{g=1}^{G} n_{g}\right)\left(\ln \sigma_{\eta}^{2}+\ln \sigma_{b}^{2}\right) \\
& +\sum_{g=1}^{G} \sum_{i=1}^{n_{g}}\left\{y_{g i} E_{\theta^{(t)}}\left[\ln p\left(X_{g i} ; \beta\right) \mid y_{g i}, w_{g i}\right]+\left(1-y_{g i}\right) E_{\boldsymbol{\theta}^{(t)}}\left[\ln \left(1-p\left(X_{g i} ; \beta\right)\right) \mid y_{g i}, w_{g i}\right]\right\} \\
& -\frac{1}{2 \sigma_{\eta}^{2}} \sum_{g=1}^{G} \sum_{i=1}^{n_{g}} E_{\boldsymbol{\theta}^{(t)}}\left[\left(W_{g i}-X_{g i}\right)^{2} \mid y_{g i}, w_{g i}\right]-\frac{1}{2 \sigma_{b}^{2}} \sum_{g=1}^{G} \sum_{i=1}^{n_{g}} E_{\theta^{(t)}}\left[\left(X_{g i}-\mu_{g}\right)^{2} \mid y_{g i}, w_{g i}\right] \tag{2}
\end{align*}
$$

In fact, the third term of $Q\left(\theta \mid \theta^{(t)}\right)$ is constant because σ_{η}^{2} is known. Since the conditional density of $X_{g i}$ given $Y_{g i}=y_{g i}$ and $W_{g i}=w_{g i}$ is

$$
f\left(x_{g i} \mid y_{g i}, w_{g i} ; \theta\right)=\frac{p\left(x_{g i} ; \beta\right)^{y_{g i}}\left[1-p\left(x_{g i} ; \beta\right)\right]^{1-y_{g i}} h\left(x_{g i} ; w_{g i}, \mu_{i}, \sigma_{\eta}^{2}, \sigma_{b}^{2}\right)}{\int p\left(x_{g i} ; \beta\right)^{y_{g i}}\left[1-p\left(x_{g i} ; \beta\right)\right]^{1-y_{g i}} h\left(x_{g i} ; w_{g i}, \mu_{i}, \sigma_{\eta}^{2}, \sigma_{b}^{2}\right) d x_{g i}}
$$

where $h\left(x_{g i} ; w_{g i}, \mu_{i}, \sigma_{b}^{2}, \sigma_{\eta^{2}}\right)$ is the p.d.f of $N\left(\frac{\sigma_{b}^{2} w_{g}+\sigma_{\eta}^{2} \mu_{i}}{\sigma_{b}^{2}+\sigma_{\eta}^{2}}, \frac{\sigma_{b}^{2} \sigma_{\eta}^{2}}{\sigma_{b}^{2}+\sigma_{\eta^{2}}}\right)$, conditional expectations in $Q\left(\theta \mid \theta^{(t)}\right)$ do not have closed form of expressions. Thus, a Monte-Carlo EM method is used as is generally the case in many similar situations. The outline of the M-Step in the $(t+1)$ st iteration of the EM algorithm can be described as follows:

Step 1: Set $\mu^{(t+1)}$ equal to the isotonic regression of $\left(\bar{m}_{1}, \cdots, \bar{m}_{G}\right)^{\prime}$ with weight vector $\left(n_{1}, \cdots, n_{G}\right)^{\prime}$, where $\bar{m}_{g}=\frac{1}{n_{g}} \sum_{i=1}^{n_{g}} E_{\theta^{(t)}}\left[X_{g i} \mid y_{g i}, w_{g i}\right]$. Then, compute $\sigma_{b}^{2(t+1)}=\frac{1}{\sum_{g=1}^{G} n_{g}} \sum_{g=1}^{G} \sum_{i=1}^{n_{g}} E_{\theta^{(t)}}\left[\left(X_{g i}-\mu^{(t+1)}\right)^{2} \mid y_{g i}, w_{g i}\right]$, similarly.

Step 2: Keeping $\boldsymbol{\theta}^{(t)}$ in the conditional distribution, apply a usual Newton method to maximize $Q\left(\boldsymbol{\theta} \mid \boldsymbol{\theta}^{(t)}\right)$ with respect to β until a convergence criterion is satisfied. And set $\beta^{(t+1)}$ equal to the solution.

It should be noted that the Newton method in Step 2 can be applied simply to the second term in $Q\left(\theta \mid \theta^{(t)}\right)$ because all other conditional expectations do not involve β.

EM with Measurement Errors and Missing in Covariate:

1) Linear regression

In this case, $Q_{1}\left(\theta \mid \theta^{(t)}\right)$ is the same as (4) while $Q_{2}\left(\theta \mid \theta^{(t)}\right)$ is given by

$$
\begin{align*}
Q_{2}\left(\theta \mid \theta^{(t)}\right)= & -\frac{1}{2}\left(\sum_{g=1}^{G} n_{g}^{*}\right)\left(\ln \sigma_{\eta}^{2}+\ln \sigma_{b}^{2}+\ln \sigma_{\varepsilon}^{2}\right)-\frac{1}{2 \sigma_{\varepsilon}^{2}} \sum_{g=1}^{G} \sum_{i=1}^{n_{g}^{*}} E_{\theta^{(t)}}\left[\left(Y_{g i}^{*}-\beta_{0}-\beta_{1} X_{g i}^{*}\right)^{2} \mid y_{g i}^{*}\right] \\
& -\frac{1}{2 \sigma_{\eta}^{2}} \sum_{g=1}^{G} \sum_{i=1}^{n_{g}^{*}} E_{\theta^{(t)}}\left[\left(W_{g i}^{*}-X_{g i}^{*}\right)^{2} \mid y_{g i}^{*}\right]-\frac{1}{2 \sigma_{b}^{2}} \sum_{g=1}^{G} \sum_{i=1}^{n_{g}^{*}} E_{\theta^{(t)}}\left[\left(X_{g i}^{*}-\mu_{g}\right)^{2} \mid y_{g i}^{*}\right] . \tag{3}
\end{align*}
$$

Recall first $\left(X_{g i} \mid y_{g i}, w_{g i}\right)$ follows $N\left(m_{x}\left(y_{g i}, w_{g i} ; \theta\right), v_{x}(\theta)\right)$. Also note that $\left(X_{g i}^{*}, W_{g i}^{*} \mid y_{g i}^{*}\right)$ follows a bivariate normal distribution $B V N\left(m_{x^{*}}\left(y_{g i}^{*} ; \boldsymbol{\theta}\right), m_{w^{*}}\left(y_{g i}^{*} ; \boldsymbol{\theta}\right), \rho_{x^{*} w^{*}}(\boldsymbol{\theta}), \nu_{x^{*}}(\boldsymbol{\theta}), \nu_{w^{*}}(\boldsymbol{\theta})\right)$ where $m_{x^{*}}\left(y_{g i}^{*} ; \boldsymbol{\theta}\right)=m_{w^{*}}\left(y_{g}^{*} ; \boldsymbol{\theta}\right)=$ $\frac{\sigma_{\varepsilon}^{2} \mu_{g}+\beta_{1} \sigma_{b}^{2}\left(y_{g_{i}}^{*}-\beta_{0}\right)}{\sigma_{\varepsilon}^{2}+\beta_{1}^{2} \sigma_{b}^{2}}, \quad \rho_{x^{*} w^{*}}(\theta)=\left[\frac{\sigma_{\varepsilon}^{2} \sigma_{b}^{2}}{\sigma_{\varepsilon}^{2} \sigma_{b}^{2}+\sigma_{\varepsilon}^{2} \sigma_{\eta^{2}}+\beta_{1}^{2} \sigma_{b}^{2} \sigma_{\eta}^{2}}{ }^{\frac{1}{2}}, v_{x^{*}}(\theta)=\frac{\sigma_{\varepsilon}^{2} \sigma_{b}^{2}}{\sigma_{\varepsilon}^{2}+\beta_{1}^{2} \sigma_{b}^{2}}\right.$, and $v_{w^{*}}(\theta)=\frac{\sigma_{\varepsilon}^{2} \sigma_{b}^{2}+\sigma_{\varepsilon}^{2} \sigma_{\eta}^{2}+\beta_{1}^{2} \sigma_{b}^{2} \sigma_{\eta}^{2}}{\sigma_{\varepsilon}^{2}+\beta_{1}^{2} \sigma_{b}^{2}}$. Similarly to the case without missing, let $\bar{m}_{g}=\frac{1}{n_{g}+n_{g}^{*}} \sum_{i=1}^{n_{g}}\left[m_{x}\left(y_{g i}, w_{g i} ; \theta^{(t)}\right)+m_{x^{*}}\left(y_{g i}^{*} ; \theta^{(t)}\right)\right], g=1, \cdots, G$, $\bar{m}=\frac{1}{\sum_{g=1}^{G}\left(n_{g}+n_{g}^{*}\right)} \sum_{g=1}^{G}\left(n_{g}+n_{g}^{*}\right) \bar{m}_{g}$, and $\bar{y}=\frac{1}{\sum_{g=1}^{G}\left(n_{g}+n_{g}^{*}\right)} \sum_{g=1}^{G}\left(\sum_{i=1}^{n_{g}} y_{g i}+\sum_{i=1}^{n_{g}^{*}} y_{g i}^{*}\right)$. Then, considering 11 and (3), we can establish the EM algorithm that updates estimates as follows:

$$
\begin{aligned}
\mu^{(t+1)}= & \text { isotonic regression of }\left(\bar{m}_{1}, \bar{m}_{2}, \cdots, \bar{m}_{G}\right)^{\prime} \text { with weight vector }\left(n_{1}+n_{1}^{*}, n_{2}+n_{2}^{*}, \cdots, n_{G}+n_{G}^{*}\right)^{\prime}, \\
\beta_{1}^{(t+1)}= & \frac{\sum_{g=1}^{G}\left\{\sum_{i=1}^{n_{g}}\left[m_{x}\left(y_{g i}, w_{g i} ; \boldsymbol{\theta}^{(t)}\right)-\bar{m}\right] y_{g i}+\sum_{i=1}^{n_{g}^{*}}\left[m_{x^{*}}\left(y_{g i}^{*} ; \boldsymbol{\theta}^{(t)}\right)-\bar{m}\right] y_{g}^{*}\right\}}{\sum_{g=1}^{G}\left\{\sum_{i=1}^{n_{g}}\left[m_{x}\left(y_{g i}, w_{g i} ; \boldsymbol{\theta}^{(t)}\right)-\bar{m}\right]^{2}+\sum_{i=1}^{n_{g}^{*}}\left[m_{x^{*}}\left(y_{g i}^{*} ; \boldsymbol{\theta}^{(t)}\right)-\bar{m}\right]^{2}\right\}}, \\
\beta_{0}^{(t+1)}= & \bar{y}-\beta_{1}^{(t+1)} \bar{m}, \\
\sigma_{b}^{2(t+1)}= & \frac{1}{\sum_{g=1}^{G}\left(n_{g}+n_{g}^{*}\right)} \sum_{g=1}^{G}\left\{\sum_{i=1}^{n_{g}}\left[m_{x}\left(y_{g i}, w_{g i} ; \boldsymbol{\theta}^{(t)}\right)-\mu_{g}^{(t+1)}\right]^{2}+\left[m_{x^{*}}\left(y_{g i}^{*} ; \boldsymbol{\theta}^{(t)}\right)-\mu_{g}^{(t+1)}\right]^{2}\right. \\
& \left.+n_{g} v_{x}\left(\boldsymbol{\theta}^{(t)}\right)+n_{g}^{*} v_{x^{*}}\left(\boldsymbol{\theta}^{(t)}\right)\right\}, \\
\sigma_{\varepsilon}^{2(t+1)}= & \frac{1}{\sum_{g=1}^{G}\left(n_{g}+n_{g}^{*}\right)} \sum_{g=1}^{G}\left\{\sum_{i=1}^{n_{g}}\left[y_{g i}-\beta_{0}^{(t+1)}-\boldsymbol{\beta}_{1}^{(t+1)} m_{x}\left(y_{g i}, w_{g i} ; \boldsymbol{\theta}^{(t)}\right)\right]^{2}\right. \\
& \left.+\sum_{i=1}^{n_{g}^{*}}\left[y_{g i}^{*}-\beta_{0}^{(t+1)}-\beta_{1}^{(t+1)} m_{x^{*}}\left(y_{g i}^{*} ; \boldsymbol{\theta}^{(t)}\right)\right]^{2}+n_{g} v_{x}\left(\boldsymbol{\theta}^{(t)}\right)+n_{g}^{*} v_{x^{*}}\left(\boldsymbol{\theta}^{(t)}\right)\right\} .
\end{aligned}
$$

2) Logistic regression

Based on observations having missing values in covariate, the second term of $Q\left(\theta \mid \theta^{(t)}\right)$ for this model is
expressed as

$$
\begin{align*}
Q_{2}\left(\theta \mid \theta^{(t)}\right) & =-\frac{1}{2}\left(\sum_{g=1}^{G} n_{g}\right)\left(\ln \sigma_{\eta}^{2}+\ln \sigma_{b}^{2}\right) \\
& +\sum_{g=1}^{G} \sum_{i=1}^{n_{g}^{*}}\left\{y_{g i}^{*} E_{\theta^{(t)}}\left[\ln p\left(X_{g i}^{*} ; \beta\right) \mid y_{g i}^{*}\right]+\left(1-y_{g i}^{*}\right) E_{\theta^{(t)}}\left[\ln \left(1-p\left(X_{g i}^{*} ; \beta\right)\right) \mid y_{g i}^{*}\right]\right\} \\
& -\frac{1}{2 \sigma_{\eta}^{2}} \sum_{g=1}^{G} \sum_{i=1}^{n_{g}^{*}} E_{\theta^{(t)}}\left[\left(W_{g i}^{*}-X_{g i}^{*}\right)^{2} \mid y_{g i}^{*}\right]-\frac{1}{2 \sigma_{b}^{2}} \sum_{g=1}^{G} \sum_{i=1}^{n_{g}^{*}} E_{\theta^{(t)}}\left[\left(X_{g i}^{*}-\mu_{g}\right)^{2} \mid y_{g i}^{*}\right] . \tag{4}
\end{align*}
$$

In order to maximize $Q\left(\boldsymbol{\theta} \mid \boldsymbol{\theta}^{(t)}\right)$, we need a Newton method as a part of each EM procedure. However, our investigations indicate that it does not take too long time to reach a convergence criterion. Considering (2) and (4), the M-Step can be summarized as follows:

Step 1: Set $\mu^{(t+1)}$ equal to the isotonic regression of $\left(\bar{m}_{1}, \cdots, \bar{m}_{G}\right)^{\prime}$ with weight vector $\left(n_{1}+n_{1}^{*}, \cdots, n_{G}+\right.$ $\left.n_{G}^{*}\right)^{\prime}$, where $\bar{m}_{g}=\frac{1}{n_{g}+n_{g}^{*}}\left\{\sum_{i=1}^{n_{g}} E_{\theta^{(t)}}\left[X_{g i} \mid y_{g i}, w_{g i}\right]+\sum_{i=1}^{n_{g}^{*}} E_{\theta^{(t)}}\left[X_{g i}^{*} \mid y_{g i}^{*}\right]\right\}$. Then, compute $\sigma_{b}^{2(t+1)}=\frac{1}{\sum_{g=1}^{G}\left(n_{g}+n_{g}^{*}\right)} \sum_{g=1}^{G}\left\{\sum_{i=1}^{n_{g}} E_{\theta^{(t)}}\left[\left(X_{g i}-\mu^{(t+1)}\right)^{2} \mid y_{g i}, w_{g i}\right]+\sum_{i=1}^{n_{8}^{*}} E_{\theta^{(t)}}\left[\left(X_{g i}^{*}-\mu^{(t+1)}\right)^{2} \mid y_{g i}^{*}\right]\right\}$, similarly.

Step 2: Keeping $\theta^{(t)}$ in the conditional distributions, plug $\mu^{(t+1)}$ and $\sigma_{b}^{2^{(t+1)}}$ into $Q\left(\theta \mid \theta^{(t)}\right)$ and apply a usual Newton method to maximize $Q\left(\theta \mid \theta^{(t)}\right)$ with respect to β. Set $\beta^{(t+1)}$ equal to the solution.

As mentioned earlier, the conditional expectations here do not have closed form of expressions, and thus we rely on a Monte Carlo method to evaluate them.

[^0]: *Corresponding author: hmkim@ucalgary.ca, Office: (403) 220-5691, Fax: (403) 282-5150: Department of Mathematics and Statistics, The University of Calgary, 2500 University Drive N.W. Calgary, Alberta, Canada T2N 1N4

