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Appendix A: The Likelihood Function, Prior, and Pos-

terior

Suppose we have n patients in the current trial (E1690). Let yi denote the survival

time for the ith patient, which may be right censored, and let νi denote the censoring

indicator, which equals 1 if yi is a failure time and 0 if it is right censored. Also let xi =

(1, trti)
′ denote the vector of covariates, where trti denotes the treatment indictor such

that trti = 1 if the ith patient received IFN and trti = 0 if the ith patient received OBS.

The observed current data is D = (n,y,ν, X), where y = (y1, . . . , yn)′, ν = (ν1, . . . , νn)′,

X = (x1, . . . ,xn)′. Following Chen et al. (1999), we obtain the likelihood function as

follows:

L(β,λ|D) =
n∏
i=1

{
exp(x′iβ)f0(yi|λ)

}νi

exp{− exp(x′iβ)F0(yi|λ))}, (A.1)

where β = (β0, β1)
′, and F0(y|λ) is the cumulative distribution function and f0(y|λ) is

the corresponding density function. In (A.1), we assume a piecewise exponential model

for F0(y|λ), which is given by

F0(y|λ) = 1− exp
{
− λj(y − sj−1)−

j−1∑
g=1

λg(sg − sg−1)
}
,

where sj−1 ≤ y < sj, s0 = 0 < s1 < s2 < . . . < sJ = ∞, and λ = (λ1, . . . , λJ)′. We note

that in (A.1), the cure rates are exp{− exp(β0 + β1)} and exp{− exp(β0)} for patients in

the IFN arm and the OBS arm, respectively.

Suppose we have n0 patients in the historical trial (E1684). Let y0i denote the survival

time for the ith patient, which may be right censored, and let ν0i denote the censoring
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indicator, which equals 1 if y0i is a failure time and 0 if it is right censored. Also let x0i =

(1, trt0i)
′ denote the vector of covariates, where trt0i denotes the treatment indictor for

the ith patient in the historical trial. The observed historical data is D0 = (n0,y0,ν0, X0),

where y0 = (y01, . . . , y0n)′, ν0 = (ν01, . . . , ν0n)′, X0 = (x01, . . . ,x0n)′. Then, the power

prior in Equation (2) based on the historical data D0 is given by

π(β,λ|D0, a0) ∝
[ n0∏
i=1

{
exp(x′0iβ)f0(y0i|λ)

}ν0i

exp{− exp(x′0iβ)F0(y0i|λ))}
]a0

π0(β,λ),

(A.2)

where 0 ≤ a0 ≤ 1 and π0(β,λ) is an initial prior. We specify a noninformative uniform

initial prior for β and λ. Specifically, π0(β,λ) ∝ 1.

Let θ = (β,λ). Using (A.1) and (A.2), the posterior distribution of θ given (D,D0, a0)

can be written as follows:

π(θ|D,D0, a0) ∝ L(β,λ|D)π(β,λ|D0, a0), (A.3)

where π(β,λ|D0, a0) is defined by (A.3). Chen et al. (1999) developed an efficient Markov

chain Monte Carlo sampling algorithm to sample from θ from the posterior distribution

(A.3).

Appendix B: Bayesian Model Comparison Criteria

To determine an optimal combination of (J, a0) in the posterior distribution (A.3), we con-

sider two Bayesian model comparison criteria, namely, the deviance information criterion

(DIC) and the Logarithm of Pseudo Marginal Likelihood (LPML).

For DIC, we first define the deviance function as

Dev(θ) = −2 logL(β,λ|D),

where L(β,λ|D) is defined in (A.1). Let θ̄ = E[θ|D,D0, a0] and Dev = E[Dev(θ)|D,D0, a0]

denote the posterior means of θ and Dev(θ) with respect to the posterior distribution in
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(A.3), respectively. Then, according to Spiegelhalter et al. (2002), the DIC measure is

defined as

DIC = Dev(θ̄) + 2pD, (A.4)

where pD = Dev−Dev(θ̄) is the effective number of model parameters. The first term in

(A.4) measures the goodness-of-fit. The smaller the Dev(θ̄), the better the fit. The second

term 2pD in (A.4) is the dimension penalty. The DIC in (A.4) is a Bayesian measure of

predictive model performance, which is decomposed into a measure of fit (Dev(θ̄)) and

a measure of model complexity (pD). The smaller the value the better the model will

predict new observations generated in the same way as the data. The form of DIC given

in (A.4) is exactly the same as AIC. However, unlike AIC, the effective number of model

parameters (pD) is automatically calculated according to the posterior distribution (A.3).

The conditional predictive ordinate (CPO) in model comparison is a Bayesian cross-

validation approach. Given the model defined by (A.1), the CPO statistic for the ith

patient is defined as

CPOi = E
[{

exp(x′iβ)f0(yi|λ)
}νi

exp{− exp(x′iβ)F0(yi|λ))}|D(−i), D0, a0

]
,

where D(−i) is the observed data D with the ith patient removed and the expectation

is taken with respect to the posterior distribution in (A.3) with D replaced by D(−i).

This statistic is the posterior predictive probability of the ith observation given all other

observed data under the assumed model. The larger the value of CPOi, the more the ith

observation supports the fitted model. According to Chen et al. (2000), CPOi can be

computed as

CPOi =
{
E
([{

exp(x′iβ)f0(yi|λ)
}νi

exp{− exp(x′iβ)F0(yi|λ))}
]−1∣∣∣D,D0, a0

)}−1

,

where the expectation is taken with respect to the joint posterior distribution of θ given

by (A.3). The CPOi value can be summed over all patients to form a single summary

statistics — logarithm of pseudo marginal likelihood (LPML) (Ibrahim et al., 2001) given
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by

LPML =
n∑
i=1

log CPOi.

Models with larger LPML values are preferred to models with lower LPML values. Accord-

ing to Gelfand and Dey (1994), LPML implicitly includes a similar dimensional penalty

as AIC asymptotically.

We use the DIC and LPML criteria to determine the optimal choice of (J, a0). For

E1684 and E1690, the optimal choices of (J, a0) were (J = 5, a0 = 0.4) for RFS and

(J = 10, a0 = 0.4) for OS according to both DIC and LPML.
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