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I. INTRODUCTION

In this supplementary methods we provide a more detailed description of the statistical methods utilized in the
main manuscript.

II. ONE COMBINATION ONE TRIAL

In this section we discuss the simplest case of one agent combination tested in one trial of sample size N . The
outcome is the number of patients n that responded to treatment. Under the assumption that all patients are
equivalent the probability to obtain n responses after treating N patients is given by the binomial distribution

P (n|p, N) =

(

N

n

)

pn(1 − p)N−n (1)

where p is the probability that a patient responds to treatment. p is an unknown parameter that we will estimate
from the available data. To do so we use the Bayes theorem

P (p|n, N)P (n, N) = P (n|p, N)P (p, N) (2)

that reads, the probability of the model parameter p given the data times the probability of the data equals the
probability of the data given the model parameter p times the probability of the model parameter. P (p, N) is called
the prior distribution and P (p|n, N) the posterior distribution. In general we can assume that p and N are independent
and, therefore, P (p, N) = P (p)P (N) and (2) can be rewritten as

P (p|n, N) =
1

Z
P (n|p, N)P (p) (3)

where Z = P (n, N)/P (N). Z(n, N) can also be derived from the normalization of P (p|n, N):
∫ 1

0
dpP (p|, n, N) = 1,

obtaining

Z(n, N) =

∫ 1

0

dpP (n|p, N)P (p) (4)

The prior distribution of p for the binomial model is a beta distribution (2; 3)

P (p) = Be(p; α̃, β̃) =
1

B(α̃, β̃)
pα̃−1(1 − p)β̃−1 (5)

where Be(p; α̃, β̃) denotes the beta distribution, B(α̃, β̃) denotes the beta function, and α̃ and β̃ are called hyperpa-

rameters. Using symmetry arguments it can be shown that the correct choice of hyperparameters is α̃ ≪ 1 and β̃ ≪ 1
(1).

From (3) and (5) we obtain that the posterior distribution also follows a beta distribution as well

P (p|n, N) = Be(p; α, β) (6)
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where

α = α̃ + n ≈ n (7)

α = β̃ + N − n ≈ N − n (8)

where the approximations are obtained after impossing that α̃ ≪ 1 and β̃ ≪ 1. From the posterior distribution we
can calculate different quantities. For example the posterior estimate of the mean of p

mean(p) =
α

α + β
≈

n

N
(9)

III. ONE COMBINATION MULTIPLE TRIALS

In this section we discuss the case of one agent combination that has been tested in one or more trials of sample
sizes N1, N2, ... NT , where T is the number of trials. The outcome is the number of patients ni that responded to
treatment in trial i = 1, 2, . . . , T . In practice the clinical trials may have been conducted using different doses and/or
treatment schedules and in different cancer subtypes. Thefore, the assumption that all patients are equivalent may
not represent the real scenario. To deal with this case we assume that within each trial all patients are equivalent,
but different trials may be characterized by different response rates. Specifically, we assume there are G groups of
trials, each characterized by its one probability of response pk, k = 1, . . . , G and each trial belongs to one of these
groups. We denote by gi the group to which trial i belongs, i = 1, . . . , T . We note G and gi are unknown parameters
that will be estimated from the data. The probability to observe the data given this model is

P (n|p, g, N) =
T

∏

i=1

(

Ni

ni

)

pni

gi
(1 − pgi

)Ni−ni (10)

Again, using Bayes theorem we write

P (p, g|n, N)P (n, N) = P (n|p, g, N)P (p, g, N) (11)

Assuming that the response rates, trial group and sample sizes are independent we obtain P (p, g, N) = P (p)P (g)P (N).
The prior distribution of the response rates is, as explained above, given by a beta distribution, now across multiple
groups

P (p) =

G
∏

k=1

Be(pk; α̃k, β̃k) (12)

The prior distribution of g can be generated assuming a multinomial model (2), where a trial belong to group k with
probability πk, resulting in

P (g) = P (g|π)P (π) (13)

where

P (g|π) =

T
∏

i=1

πgi
(14)

and P (π) is the prior distribution of π. The prior distribution of the multinomial model is the Dirichlet distribution
(2), the generalization of the beta distribution,
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P (π) = D(π; γ̃) =
1

B(γ̃)

G
∏

k=1

πγ̃k

k (15)

where

B(γ̃) =

∏G
k=1

Γ(γ̃k)

Γ
(

∑G

k=1
γ̃k

) (16)

is the generalized beta function. Once again, using symmetry arguments it can be shown that the correct choice
if hyperparameters is γ̃ ≪ 1 (1). Putting all together, from equations (10)-(15) we obtain the prior and posterior
distributions

P (p, g, π) =

G
∏

k=1

Be(pk; α̃k, β̃k)

T
∏

i=1

πgi
D(π; γ̃) (17)

P (p, g, π|n, N) =
1

Z

G
∏

k=1

Be(pk; αk, βk)D(π; γ)
B(γ)

B(γ̃)

G
∏

k=1

B(αk, βk)

B(α̃, β̃)
(18)

where

αk = α̃k +
∑

i=1,...,T |gi=k

ni (19)

βk = β̃k +
∑

i=1,...,T |gi=k

(Ni − ni) (20)

γk = γ̃k +
∑

i=1,...,T |gi=k

1 (21)

We can integrate (18) over the p and π variables to obtain the marginal posterior distribution for g

P (g|n, N) =
1

Z

B(γ)

B(γ̃)

G
∏

k=1

B(αk, βk)

B(α̃, β̃)
(22)

Using equation (22) we can discriminate between different clusterings of the trials, including the case were all trials

belong to one group, and select the one with highest probability. The hyperparameters α̃, β̃ and γ̃ should be choosen as
small as possible, taking into account that too small values may compromise the numerical accuracy when computing
the Γ function. We used α̃ = β̃ = γ̃ = 1 × 10−2. For no so large T and G, we can evaluate equation (22) for all
possible clusterings of the T trials in K groups and select the group with largest likelihood P (g|n, N).

As a case study, we analyzed the case when there are two different trials with response probability p1 and p2

and sample sizes N1 and N2. At each simulation of the trials, we generated values of n1 and n2 from the binomial
distributions p(n1|p1, N1) and p(n2|p2, N2). Then, using equation(22), we determined if the trials fall into one or
two different groups. For the case N1 = N2 and p2 = 1 − p1 (p2 − p1 = 1 − 2p1), the Supplementary Figure 1
shows the fraction of times the variational method predicted that the two trials are statistically different in 1,000 trial
simulations. When p2−p1 > 0.3, in most cases the variational method correctly predicts that n1 and n2 are generated
by differnt distributions. In contrast, when p2 − p1 < 0.1, in most cases the variational method fail to detect that n1

and n2 are generated from different distributions. This is, however, expected since for p2 − p1 < 0.1 the distributions
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of n1 and n2 are quite close to each other. The transition between these two extreme regimes is smoother or sharper
depending on the sample sizes, being sharper the larger the sample sizes.
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Supplementary Figure 1: Performance of the variational method for the case N1 = N2 and p2 = 1−p1. The upper
panels show the distributions P (n|p1, 100) (black), P (n|p2, 100) (red) and P (n|, 0.5, 100) (green-dashed) for p1 = 0.45
and p2 = 0.55 (left) and p1 = 0.3 and p2 = 0.7 (right).

IV. 2-AGENTS APPROXIMATION

In this section we describe the numerical implementation of the 2-agent approximation. The 2-agent approximation
is given by

pc =

Na
∑

i=1

scihi +

Na−1
∑

i=1

Na
∑

j=i+1

sciscjJij , 1 ≤ c ≤ C (23)

where C is the number of combinations, Na is the number of agents, sci is the agent to combination matrix (sci = 1
if agent i is used in combination c and sci = 0 otherwise), the hi quantifies the response of single agents and the
parameters Jij the interactions between agents i and j. We can write (23) in a more compact form after introducing
the following notation. We create a list with all the hs and Js parameters, arranged such that the element k contains
the parameter hk for 1 ≤ k ≤ Na and the Js for Na + 1 ≤ k > Np, where Np is the total number of hs and Js. In
the most general scenario there are Na(Na − 1)/2 of Js, one for each pair of agents, and Np = Na + Na(Na − 1)/2.
However, the 2-agents approximation can only constraint a give Jij if there is at least one combination containing
agents i and j. The Js values that cannot be constrained are removed. We denote by NJ the number of Js that are
not removed, resulting in Np = Na + NJ . We will also denonte by ik and jk the i and j associated with the k-th Jij

element, Na + 1 ≤ k ≤ Np, in the parameters list. Using this notation we we can write (23) as

Np
∑

k=1

Ackxk = pc , 1 ≤ c ≤ C (24)

where
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A =

{

sck , 1 ≤ c ≤ C 1 ≤ k ≤ Na

scik
scjk

, 1 ≤ c ≤ C Na + 1 ≤ k ≤ Np
(25)

x =

{

hk , 1 ≤ k ≤ Na

Jik,jk
, Na + 1 ≤ k ≤ Np

(26)

The system of equations (24) has C equations and Np variables. In the problem considered within the main manuscript
Np > C. Taking into account that we do not know the precise values of pc but its distribution, we double the number
equations as follows

Np
∑

k=1

Ackxk = bc , 1 ≤ c ≤ 2C (27)

A =











sck , 1 ≤ c ≤ C , 1 ≤ k ≤ Na

scik
scjk

, 1 ≤ c ≤ C , Na + 1 ≤ k ≤ Np

sc−C,k , C + 1 ≤ c ≤ 2C , 1 ≤ k ≤ Na

sc−C,ik
sc−C,jk

, C + 1 ≤ c ≤ 2C , Na + 1 ≤ k ≤ Np

(28)

b =

{

random number from Be(αc, βc) , 1 ≤ c ≤ C
random number from Be(αc−C , βc−C) , C + 1 ≤ c ≤ 2C

(29)

In this way we obtain a system of 2C equations and Np variables. In the problem considered in the main manuscript
2C > Np, resulting in more equations than variables. Finally, we take into account that the response rates take values
between 0 and 1, imposing constraints on the hs and Js. In particular, since the hs represent the response rates for
single agent combinations, they take values between 0 and 1, i.e. 0 ≤ xk ≤ 1 for 1 ≤ k ≤ Na. Similarly, for every
combination of two agents we have 0 ≤ hik

+ hjk
+ Jik,jk

≤ 1, Na + 1 ≤ k ≤ Np. This constraint can be taken
into account introducing the auxiliary equations hik

+ hjk
+ Jik,jk

− xNJ+k = 0 with the auxiliary variables xNJ+k

satisfying 0 ≤ xNJ+k ≤ 1, Na +1 ≤ k ≤ Np. We also note that 0 ≤ hik
+hjk

+Jik,jk
≤ 1 implies that −2 ≤ Jik,jk

≤ 1.
After adding this constraint we augments our systems of equations to

Nv
∑

k=1

Ackxk = bc , 1 ≤ c ≤ 2C + NJ (30)

lk ≤ xk ≤ 1 , 1 ≤ k ≤ Nv (31)

where Nv = Np + NJ and

A =



















































sck , 1 ≤ c ≤ C , 1 ≤ k ≤ Na

scik
scjk

, 1 ≤ c ≤ C , Na + 1 ≤ k ≤ Np − Na

0 , 1 ≤ c ≤ C , Np + 1 ≤ k ≤ Nv

sc−C,k , C + 1 ≤ c ≤ 2C , 1 ≤ k ≤ Na

sc−C,ik
sc−C,jk

, C + 1 ≤ c ≤ 2C , Na + 1 ≤ k ≤ Np − Na

0 , C + 1 ≤ c ≤ 2C , Np + 1 ≤ k ≤ Nv

1 − (1 − δk,ik
)(1 − δk,jk

) , 2C + 1 ≤ c ≤ 2C + NJ , 1 ≤ k ≤ Na

δc−2C,k , 2C + 1 ≤ c ≤ 2C + NJ , Na + 1 ≤ k ≤ NJ

−1 , 2C + 1 ≤ c ≤ 2C + NJ , Np + 1 ≤ k ≤ Nv

(32)

b =







random number from Be(αc, βc) , 1 ≤ c ≤ C
random number from Be(αc−C , βc−C) , C + 1 ≤ c ≤ 2C
0 , 2C + 1 ≤ c ≤ 2C + NJ

(33)

l =







0 , 1 ≤ k ≤ Na

−2 , Na + 1 ≤ k ≤ Np

0 , Np + 1 ≤ k ≤ Nv

(34)

where δij = 1 when i = j and 0 otherwise.
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A. Numerical solution using Matlab

We solved the problem (30) using the Matlab function lsqlin. To this end, at each simulation, we generated the
random vectors (33) and obtained the least-squares solution to (30) under the lower/upper bound constraints (31),
and consequently the associated hs and Js. The simulation was repeated 1,000 times to estimate the distribution of
the hs and Js parameters.

B. The case of different response rates for the same combination
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