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Functional clustering

In order to identify subgroups an exploratory functional clustering for sparse data was ap-

plied. The clustering model by James et al [1] assumes that the observed values yi for

individuals i can be constructed from a function gi subject to measurement errors εi at

measurements of %Wmax, xi1, . . . , xini
.

Yi = gi + εi, i = 1, . . . , n

The measurement errors have mean zero and are uncorrelated. It is assumed that unobserved

x are missing at random. Spline basis functions are used for the functions g. This leads to

a functional clustering model [1]

Yi = Si(λ0 + Λαzi + γi) + εi, i = 1, . . . , n

εi ∼ N (0, σ2I), γi ∼ N (0,Γ)

where Si = (s(xi1), . . . , s(xini
)) is the spline basis matrix for the i-th individual. The model

λ0+Λαzi parameterizes the cluster means where zi refers to the unknown cluster membership.

Nonlinear mixed effects models

For each child from i = 1 to n = 79, each with ni observations we consider the Mixed-effects

Quadratic-Delay model (MQD)

yij = a+ b1 (xij − c ∨ 0) + b2 (xij − c ∨ 0)2 + ui + εij, a, b1, b2 ∈ R, c ∈ [min
i,j

(xij), max
i,j

(xij)]
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where a ∨ b denotes max{a, b}. We assume ε ∼ind N (0, σ2) with σ2 measures the overall

variation, and the random effect ui ∼ind N (0, τ 2) with τ 2 measures the variation correspond-

ing to each individual. Let Yi = (yi1, yi2, · · · , yini
)′ with ni observations for the ith subject

and let Y = (Y ′1 , Y
′
2 , · · · , Y ′n)′. By stacking all N =

∑
i ni observations, the model can be

written as:

Y = X(c)β +Zu+ ε

where X(c) is the design matrix with each row (1, xij − c ∨ 0, (xij − c ∨ 0)2), and β =

(a, b1, b2)
′. The parameters to be estimated are θ = {a, b1, b2, c, σ2, τ 2}. A Bayesian ap-

proach is used by choosing conjugate priors for the slope β = (a, b1, b2)
′ and the variation

components σ2, τ 2, and a flat prior for the delay c over its finite support. Specifically,

π(β) = N3(03, δ
2I3)

π(σ2) = IG(aσ, bσ)

π(τ 2) = IG(aτ , bτ )

π(c) = Uniform(min
i,j

(xij), max
i,j

(xij))

where Np(µ, Σ) denotes a p-dimensional Gaussian distribution with mean µ and covariance

Σ, and IG(a, b) denotes Inverse Gamma distribution with shape parameter a and scale

parameter b. In practice, we choose the hyper-parameters δ2 = 103, aσ = aτ = 2 and

bσ = bτ = 0.01 which yields a dispersed prior density for less subjectivity. The full conditional

distributions for Gibbs sampler are:

π(β| · · · ) = N3(µβ,Σβ)

 Σβ = (σ−2X(c)′X(c) + δ−2I3)
−1

µβ = σ−2ΣβX(c)′Y

π(σ2 | · · · ) = IG (N/2 + aσ, ε
′ε/2 + bσ) , where ε = Y −X(c)β − u

π(τ 2 | · · · ) = IG (n/2 + aτ , u
′u/2 + bτ )

π(c | · · · ) ∝ exp{− 1

2σ2

∑
i,j

(∆ij − ui)2}

π(ui | · · · ) = N1

(
τ 2

niτ 2 + σ2

ni∑
j=1

∆ij,
τ 2

niτ 2σ−2 + 1

)
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where ∆ij = yij − a− b1 (xij − c∨ 0)− b2 (xij − c∨ 0)2. Note π(c | · · · ) is not in closed form

and can be computed numerically using Griddy-Gibbs sampler [2] over its finite support

[mini,j(xij), maxi,j(xij)]. For instance, mini,j xij is 0.08 for %maximum work capacity. An

estimated delay c that is close to its lower limit indicates a negligible delay effect. This can

happen due to pooled data masking delay effects for individuals.

Therefore we extend the mixed-effects quadratic-delay model to allow varying delay ef-

fects, by incorporating another random effect γi for the delay parameter c:

yij = a+ b1 (xij − ci ∨ 0) + b2 (xij − ci ∨ 0)2 + ui + εij, a, b1, b2 ∈ R

ci = c+ γi, ci ∈ [min
j

(xij), max
j

(xij)]

with the constraint
∑

i γi = 0 to avoid identifiability issues. Again we assume ε ∼ N (0, σ2)

with σ2 measures the overall variation, the random intercept ui ∼ N (0, τ 2) and random

delay γi ∼ N (0, ν2) with τ 2 and ν2 measure the variation of due to each individual. All three

components are assumed to be independent. This Mixed-effects Quadratic-Delay Model with

Varying delays (MQDV) can be written in matrix format

Y = X(c,γ)β +Zu+ ε

with parameters θ = {a, b1, b2, c, σ2, τ 2, ν2}. We further assume π(ν2) = IG(aν , bν). The

conditional distributions for Gibbs sampler are the same for {a, b1, b2, c, σ2, τ 2} except that

X(c) is replaced by X(c,γ), i.e., xij − c∨ 0 replaced by xij − ci ∨ 0, and for updating c the

support [mini,j(xij), maxi,j(xij)] is replaced by

[max
i

(min
j

(xij)− γi), min
i

(max
j

(xij)− γi)]

and we have

π(ν2 | · · · ) = IG (n/2 + aν , γ
′γ/2 + bν)

π(γi | · · · ) ∝ exp{− 1

2σ2

ni∑
j=1

(∆ij − ui)2 −
1

2ν2
γ2i }
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where ∆ij = yij − a − b1 (xij − c − γi ∨ 0) − b2 (xij − c − γi ∨ 0)2. Again the posterior

distribution for γi is not a known distribution but can be sampled numerically using Griddy-

Gibbs sampler over its support [minj(xij)− c, maxj(xij) + c]. With the constraint
∑

i γi = 0

we update γi for i = 1, 2, · · · , n− 1 and let γn = −
∑n−1

i=1 γi.

The Mixed-effects Power-Delay Model (MPD) is given by

yij = a+ b2 (xij − c ∨ 0)d + ui + εij, a, b2, d ∈ R, c ∈ [min
i,j

(xij), max
i,j

(xij)]

and the Mixed-effects Power-Delay Model with Varying delays (MPDV)

yij = a+ b2 (xij − ci ∨ 0)d + ui + εij, a, b2, d ∈ R

ci = c+ γi, ci ∈ [min
j

(xij), max
j

(xij)]

Compared to the quadratic models, β = (a, b1, b2)
′ is replaced by β = (a, b2, d)′ with exponent

d. The conditional distributions for common parameters are the same, except X(c) is

replaced byX(c, d), i.e., each row (1, xij−c∨ 0, (xij−c∨ 0)2) is replaced by (1, (xij−c∨ 0)d)

for MPD, and similarly X(c,γ) is replaced by X(c, d,γ) for MPDV. For power parameter

d, we choose uniform prior over a specified appropriate support that is suggested by the

data. Specifically, we choose π(d) = Uniform(0, 20). Similarly the conditional posterior

distribution for c is not known and can be computed numerically over the specified range.
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