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Section S1: A REVIEW OF FREQUENTIST METHODS 

 
There is no general formula for the exact distribution of the ICC which could be used for interval 

construction.  The asymptotic distribution of the ICC (or a variance stabilized transformation of the ICC) 

can be derived from published results (e.g., Searle et al., 2006).  But simplistic intervals constructed from 

these asymptotics can be substantially anticonservative (e.g., Zou and McDermott, 1999) ; this means, for 

example, that the probability that a nominal 95% confidence interval for the ICC contains the true ICC can 

be well below 95%.  The rate of convergence of the ICC to these asymptotics is too slow for most practical 

situations. Two frequentist CI methods to address this problem are discussed in the next two paragraphs. 

Uniform minimum variance unbiased (UMVU) estimators of each variance component in the model have 

been derived (e.g., Lehmann and Casella, 1998).  For linear combinations of variance components, Graybill 

and Wang (1980) showed that exact confidence intervals can be built from linear combinations of UMVU 

estimates in special cases where some of the mean squares are exactly zero; specifically, when some mean 

squares are zero, then coefficients on the other mean squares that provide the exact coverage can be derived 

mathematically.  Cycling through and setting different variance components to zero results in coefficient 

estimates for all mean squares.  Putting these together results in a modification of the usual interval limits 

based on standard asymptotics.  This approach is called the modified large sample (MLS) method.  An 

MLS procedure for the ICC in the random two-way layout without interaction was developed in Cappelleri 

and Ting (2003).   
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Pivotal quantities are often used to construct confidence intervals.  A pivotal quantity is a function of the 

parameter and the data with a known distribution (e.g., Lehmann, 1999) free of nuisance parameters.  No 

pivot exists for the ICC in the two-way layout, but a Generalized Pivotal Quantity (GPQ) does exist.  A 

GPQ is a function of the parameter, the data, and observable values of statistics; like the pivot, the GPQ has 

a distribution that can be described in terms of known distributions.  The GPQ can be used to construct a 

Generalized Confidence Interval (GCI).  The inclusion of observable values means that there is a subtle 

difference between the definition of the CI and the GCI (Weerahandi, 1993).   More discussion appears in 

the Methods below and in the 1993 reference.   

Frequentist methods have been compared in past papers.  Cappelleri and Ting (2003) compared the MLS 

approach in a two-way layout without interaction to a Satterthwaite two moment approach, standard 

approach, and three moment approach.  The MLS was found the best.  Gilder et al. (2007) compared MLS 

and GCI in two-way layouts with an interaction term, and recommended the MLS for overall performance. 

GCI APPROACH EQUATIONS 

 

 
 

MLS APPROACH EQUATIONS 
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Section S2: A REVIEW OF BAYESIAN METHODS 

 
Bayesian intervals are defined within the Bayesian paradigm.  In that paradigm, there is a prior distribution 

on variance components before the experiment, and a posterior distribution after the experiment that 

reflects how the observed data modified the prior.  A 95% Bayesian (credible) interval contains 95% of the 

posterior probability, that is, the probability under the posterior density curve.  The posterior distribution is 

proportional to the prior times the likelihood, so that a change in the prior also changes the posterior 

distribution.  When scientists are reporting results, this dependence of a reported interval on the specified 

prior can distract from the findings; readers may wonder how much the interval depends on the prior used.  

This leads to non-informative priors which are appropriate “when no prior data exists or when inference 

based solely on the data is desired” (Carlin and Louis, 2009, p. 36).  Non-informative priors have been used 
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extensively in random effects models and shown to have good frequentist performance in some of these 

settings (Browne and Draper, 2006). 

Due to the wide availability of Bayesian computing software, Bayesian credible intervals for the ICC are 

increasingly being reported in the biomedical literature (Barzman et al., 2012).    

Bayesian approaches to linear models are discussed in Box and Tiao (1992) and Carlin and Louis (2009).  

Bayesian methods for fitting variance components are reviewed in Browne and Draper (2006). They report 

frequentist properties of the Bayesian methods for nested designs.  In contrast to that work, we examine a 

crossed, rather than nested, model.  Bayesian credible interval methods for parameters in one-way random 

effect linear models with priors on variance components are reviewed extensively in Gelman (2006). That 

paper considers a variety of non-informative prior distributions.  Gelman showed that the commonly used 

non-informative inverse gamma priors result in credible intervals for variance components which can 

perform poorly because they are very sensitive to the choice of the prior parameters.  After examining a 

wide range of alternative distributions, Gelman (2006) recommended improper uniform priors on standard 

deviations for this one-way ANOVA setting.  In a subsequent application, Gelman used a mildly 

informative prior.  Gelman did not in this paper study the crossed, random effects model. 

 

Section S3: INVESTIGATION OF THE BAYESIAN INTERVAL METHODS 

 

                             (a)                                                    (b)                                                   (c) 

Figure S1:  Marginal distribution of the responses for the non-normal simulations.  Uniform (a)  and 

mixture normal (b) densities based on mathematical formulas presented in text.  For the (shifted, scaled) 

gamma (rightmost plot) ICCb=0.70 and ICCw=0.90.  For the gamma (c), density estimates from 10 million 

Monte Carlo simulations. 

Priors for the ICCb and ICCw that are induced by the inverse gamma, IG(0.001,0.001), distribution on each 

variance component are derived in the supplement and plotted in Figure 1(a).  The priors are both nearly 
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degenerate, with point masses at 0 and 1.  As discussed in Carlin and Louis (2009), the noninformative 

inverse gamma distribution has a very heavy tail.  This means that one variance parameter is likely to be 

much larger than one or both of the others.  The ICCb prior is zero or one when one or more of the three 

parameters 
222 ,, elb   is infinite relative to the other(s).  For example, on a typical modern personal 

computer (PC), the largest machine number is about 2×10308.  But, for X~IG(0.001,0.001),  

P(X>2×10308)≈0.49.  So, about 49% of the random variables will be larger than the largest number on a 

typical PC, i.e., effectively infinite.  Suppose 2

b .  Then   1/ 22  elbICC  .  On the 

other hand, if 2

b , but 2

e , then    0/ 222  lbbbICC  .  This explains the 

extreme finding in Figure 1(a).  See Supplement Section S7 for more discussion. 

 

 

 

 

                                        (a)                                                                         (b)                  

Figure S2:  Prior distributions on the intraclass correlation coefficients, between-lab (ICCb) and within-lab 

(ICCw). 

If the priors on each standard deviation component are mutually independent and uniform over the positive 

real numbers, then the prior distribution of the between-lab intra-class correlation (ICCb=ρb) and the within-

lab intra-class correlation (ICCw=ρw) are derived in Supplement Section S1.  The priors are 
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These prior densities are plotted in Figure 1b.  As can be seen, the ICCw prior places most of its weight near 

0 and 1.  But the density is spread out enough to be non-degenerate across the range of possible values.  For 

example, under this prior P(0.001 < ICCw <0.999)>0.99. The ICCb density places more prior weight near 

zero compared to the ICCw prior, but is also non-degenerate.  For this prior, P(0.001< ICCb <0.999)>0.99.   

 2.3 Choosing Bayesian priors 

We investigated the performance of inference using the classical noninformative inverted gamma 

distribution.  A range of inverse gamma were considered, with focus on the popular IG(0.001,0.001) prior 

defined by the probability density function  001.1001.0001.0)001.0(/)]001.0/(1[)( xxExpxf  .  This is the 

same as an inverted Wishart distribution.  Our research found a number of problems with this prior: 

1. When data were generated from the model of Equation (1), the coverage probabilities of these 

intervals varied depending on true values of the population parameters.  But, in real applications, 

these population parameters are unknown.  For example, a 95% credible interval achieved 0.945 

coverage when ICCw=0.80, but this dropped to 0.880 when ICCw=0.99, where ICCb=0.70 in both 

cases.  The coverage depends in complicated ways on the underlying truth. 

2. The confidence intervals were not invariant under scale transformations (Lehmann, 1986).  In 

other words, when the true data are transformed by a multiplicative factor c>0, resulting in 

),,(),,( 222222

elbelb ccc   , then the confidence interval changed as well.   The ICC 

itself is scale invariant, since    22222222 // elbbelbbb ccccICC   .  

For example, the mean width of the confidence interval for ICCb changed from 0.42 to 0.54 when 

we changed from c=1 to c=0.01 (with 
2

e =1, ICCw=0.9, ICCb=0.70, based on 10,000 

simulations).  In practical terms, this means that converting units from parts-per-million to parts-

per-ten-thousand, say, would result in much different IG-prior Bayesian intervals.   
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These two problems remained under a wide variety of noninformative inverse gamma prior parameter 

settings examined.   Therefore, the inverse gamma results are not presented, and only Bayesian results for 

the uniform distribution on standard deviations are studied.  The uniform distribution displayed neither of 

these problems, has been proposed as a gold standard in similar settings (Gelman, 2006), and can be 

implemented with existing widely-available software.   

DETAILS OF THE INVERSE GAMMA PRIOR 

 

SOME CHECKING OF THE BAYESIAN PRIOR DERIVATIONS 
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Section S4: SAMANIEGO CRITERIA 
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Section S5: DESCRIPTION OF THE EXCEL FILES 

FILENAME:  Summary 201212-update.xls 

 

FILENAME:  supp_Summary 20140712-194908.xls presents results based on 10,000 simulations per table 

row. 

 Design: Two numbers with first being 100 times the within-lab ICC, and the second being the 

number of laboratories in the design (denoted 0l ).  The between-lab ICC is fixed at 0.70.  Number 

of biological replicates is fixed at 24 (denoted 0b ).   

 Method:  The confidence interval construction method used, either GCI, MLS or Bayes with 

uniform prior on standard deviations. 

 Center_mean:  The average of the midpoints of the confidence intervals. 

 Center_sd: The standard deviation of the midpoints of the confidence intervals. 

 Width_mean: The average width of the confidence intervals. 

 Width_sd:  The standard deviation of the widths of the confidence intervals. 

 Coverage:  The empirical coverage observed. 
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 Coverage>0.945:  Indicator of whether column to the left is greater than 0.945. 

 Abs bias in coverage:  Bias of empirical coverage relative to nominal 95%. 

 Mean bias in coverage – Bayes:  The average bias in the Bayesian coverage across all 

simulations. 

 

 

FILENAME:  supp_Coverage for Labs 4 to 7.xls presents results based on 10,000 simulations per table 

row. 

 Design: Two numbers with first being 100 times the within-lab ICC, and the second being the 

number of laboratories in the design (denoted 0l ).  The between-lab ICC is fixed at 0.70.  The 

number of biological replicates is fixed at 24 (denoted 0b ).   

 Method:  The confidence interval construction method used, either GCI, MLS or Bayes with 

uniform prior on standard deviations. 

 Center_mean:  The average of the midpoints of the confidence intervals. 

 Center_sd: The standard deviation of the midpoints of the confidence intervals. 

 Width_mean: The average width of the confidence intervals. 

 Width_sd:  The standard deviation of the widths of the confidence intervals. 

 Coverage:  The empirical coverage observed. 

 

FILENAME:  supp_ICC Estimates.xls presents results based on 10,000 simulations per table row. 

 Design: Two numbers with first being 100 times the within-lab ICC, and the second being the 

number of laboratories in the design (denoted 0l ).  The between-lab ICC is fixed at 0.70.  The 

number of biological replicates is fixed at 24 (denoted 0b ).   

 ICChatMean:  The mean value of the estimated between-lab ICC, using the formula in Saito 

et al. (2006). 
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 ICChatSD:  The standard deviation of the estimated between-lab ICC. 

 Model:  The model used to generate the data;  for the gamma, given is the alpha parameter. 

 

 

 

 

 

 

 

 

Section S6: MARGINAL DISTRIBUTIONS FOR SIMULATION SETTINGS 
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Section S7:  TABLE OF SIMULATION SETTINGS 

 

 
 

 

 

 

 

Section S8:  SUPPLEMENTARY FIGURES 
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Figure above:  Simulation study with 48 biological replicates and 3 labs for a total of 144 

observations.  Comparison of MLS, GPQ and Bayes method performance. Nominal 95% 

confidence intervals. Coverages and average widths calculated from 10,000 simulations.  

(a)  Mixture normal model data.  48 biological replicates and 3 labs for a total of 144 

observations. 

 

 

 

 

Section S9:  DATA ANALYSIS DETAILS 

 

 

Raw data CEL files and covariate sample data were downloaded from the National 

Cancer Institute’s Center for Bioinformatics’ (NCICB) caArray 2.0 website 

(https://array.nci.nih.gov). The Experiment Identifier is dobbi00100. Data on the tumor 

samples were normalized using the Bioconductor affy suite (Gautier et al., 2004). The 

package’s mas5 function was applied under R version 2.15.2. Further normalization 

consisted of identifying the subset of features with mas5 present calls for over half the 

arrays, then multiplying each array value by a constant to make the median of this feature 

set 500. Tumors with signal values below 5.0 were truncated to 5.0, and the base 2 

logarithm transformation applied.   
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