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1 Computational notes
Marginal distribution for post-treatment model
Although the models that we have defined for the post-treatment data are non-linear in

their parameters, they are all linear in their random terms conditional on the value of

+.
ul..

_ +
Ypost:i|UL,+:ulf = g(tpost:i; u; ,T,‘) +Wpost:i + €postii

Pri + (uf — Pr.i) exp (—exp (P2:i) tpost:i1)
= +Wposti +€post:i

¢r.i + (u;— - (,blzi) exp (_ €xXp ((pZ:i) tpost:inpos,;i)

1 (u:—) +Ti+ (u:r - ((Pl (u:—) + Ti)) €xXp (—exp (‘pZ (u;—)) tpost:il)
= +Wposti +€post:i
@1 () + 7+ (uf = (e (1) +71)) exp (—exp (¢2 (1)) tposteingues

7;~N(0, P)
Wpost:i ~MVN(0, zpost:i)
€post:i ~ MVN(O, o’I

npost:i)'

As such, for the models defined, the post-treatment data follows a marginal multivariate
normal distribution conditional on the value of ", with mean vector given by:

b1 () + (uf =1 () exp (—exp (2 (1)) tpost:in)
E [ypOSt:i]W;':M;' = ,
$ (u:-) + (“7 —$ (u:—)) exp (_ exp (¢2 (u:)) tpast:in,,,m:i)

and covariance matrix given by:
2
Var [Ypost:i]wlf:ulf =Qi+Zpossi +0 In,,,,s,:,»;
where the jk element of Q;, g; i1 1s given by:

Gije = Cov [(1—exp (= exp (¢2 (7)) tpose:ij)) 7ir (1= exp (—exp (b2 (7)) tpostiir)) Ti]
= (1= exp (= exp (¢2 (47)) tpostiij)) (1 = exp (= exp (¢2 (u7)) tpostiix)) x P

Coding for positive-only latent variable

The ADMB software is designed to find maximum likelihood estimates for a function
that is differentiable in terms of all of its parameters and latent variables. Because of
this conditional statements, such as if/then statements and max (a,b), involving the
values of parameters or latent variables are not supported. Instead, a very steep logistic
function is used to obtain ul+ from u;:



double high_c = 1000000;

dvariable u_pos = u/(1 + mfexp(-high_c*u));
The double defined here is a standard C++ double-precision floating point constant,
whilst the dvariable is a class of object specific to ADMB that is designed to store the
necessary information regrading gradient structure for optimisation.

It is also worth noting that we use the function mfexp (value) in place of exp (value)

throughout, as the former is an adjusted version of the standard function that guards
against numerical under- or overflow for large absolute values of the function argument

(lvalue| > 60). This can particularly be a problem when dealing with nested exponential
functions.
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2 Evaluation of residuals

We present here plots of residuals obtained from the fit of Modelg to the UK Register of
Seroconverters dataset. The approach taken is similar that used previously by Stirrup et
al.[1] in assessing models for pre-treatment CD4 cell counts alone, which in turn was
developed from suggestions made by Fitzmaurice, Laird and Ware[2]. Firstly we note
that, for pre-treatment CD4 cell counts, the distribution for the full set of observations
for each patient is multivariate normal conditional on the value of the latent scaling
variable associated with the pre-treatment fractional Brownian motion process:

Ypre:i = Xip+Zb; +Wprei +€pre:i
b; ~MVN(0, V)
1
wpre:i|W1:i:w1:i ~ MV N(0, _Zpre:i)
Wi
epre:i ~ MVN(0,0°T,,,.).
We can therefore obtain an estimate of the pre-treatment marginal covariance matrix

specific to each patient based on the posterior predictive mode of their latent scaling

variable, 1;.;:

1

N

Wi:i

Vprei =Z;VYZ] + 2 prei + 671, .

If the model parameters and the value of the scaling variable were known, then the
distribution of the transformed marginal residuals using the inverse of the Cholesky de-
composition of the covariance matrix for each individual,Vp.;, would be normally and

independently distributed with mean 0 and variance 1:

Vpre:i = LiL}“
L;' (i ~XiB) ~ MVN (0, 1,)).

Plots of the Cholesky-transformed residuals of pre-treatment observations for Modelg,
with the covariance matrix estimated for each patient based on the posterior predictive
mode of their latent scaling variable, ,.;, are presented in Figures 1 and 2.

For post-treatment observations, the distribution for the full set of observations for
each patient is multivariate normal conditional on the value of both the true baseline
CD4 value and the latent scaling variable associated with the post-treatment fractional

Brownian motion process:

+
YPOSt:i|Ui+:u;r = g(tpost:i» u; rTi) +Wposri +€postii
7; ~N(0, P)

1
Wpost:i'Wgzi:le— ~MVN(O, Ezpost:i)

R

€post:i ~ MVN(0,0%1,,.,.).

As noted in Appendix 1 this forms a multivariate normal distribution conditional on u:r
and wy.;, given that g(tposm, u;’, Ti) is linear in 7;. As such, a covariance matrix can be
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constructed for the post-treatment observations of each patient based on the posterior
predictive modes of ul.+ and wy.;, and Cholesky-transformed residuals can be calculated
as for the pre-treatment data. Such plots are presented for Modelg Figures 3 and 4.

The residual plots shown in Figures 1-4 do not indicate any substantial model mis-
specification. However, following Stirrup et al.[1] we also consider plots summarising
Cholesky-residuals conditional on multiple samples from the joint posterior predictive
distribution of the latent variables, using the approximate multivariate normal distri-
bution as returned by ADMB. For the latent scaling variables relating to the pre- and
post-treatment stochastic process components of the model, sampling was based on
the bivariate normal a and b variables as used for the Laplace approximation of the in-
tegral, with transformation to the necessary gamma variates as described in the paper.
Plots equivalent to Figures 1-4, but based on 1000 sets of samples, are shown in Figure
5. These plots are similar to those based on the posterior predictive modes of the latent
variables, and so provide further evidence for adequacy of the model fit.

As a further check of the model structure developed, the fitted Modelg was used to sim-
ulate pre- and post-treatment CD4 counts of a cohort of 100 patients. As we have not
developed a probabilistic model for the timing of initiation of treatment, and in order
to generate a range of different conditions, these patients were randomised to initiate
treatment either: (1) immediately at the time of seroconversion, (2) 1year after serocon-
version or at the first observation below (3) 500, (4) 350 or (5) 200. Data were generated
on the square-root(CD4) scale, and cut-off points for initiation of treatment were ac-
cordingly transformed to this scale. Each patient, up until the point of treatment initia-
tion, was scheduled to be observed at 4-month intervals from seroconversion; treatment
was initiated at 8 years if the threshold for a specific patient had not been triggered be-
fore this point. Following treatment initiation, observations were simulated after 1, 2, 3
and 4 months, and at 4-month intervals thereafter up until a maximum of 5 years. An
R-script to generate such a cohort is provided as supporting information to this paper,
along with ADMB template files to refit Model, and Modelg to the simulated dataset. A
plot of CD4 counts from the simulated cohort is provided in Figure 6. This plot is visu-
ally consistent with the equivalent plot of 100 randomly selected patients from the real
dataset, although in the artificial dataset no allowance has been made for irregular tim-
ing of observations or of loss-to follow-up or administrative censoring of patients. This
comparison could be described as a posterior predictive check|[3].

Page 4 of 13



Sample quantiles

0
Theoretical quantiles

Figure 1 Quantile—quantile plot of Cholesky-transformed residuals of pre-treatment observations
for Modelg, calculated using the posterior predictive mode of the latent scaling variable ,.; for
each patient.
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Figure 2 Plot of Cholesky-transformed residuals of pre-treatment observations for Modelg against
time from seroconversion, calculated using the posterior predictive mode of the latent scaling
variable ty.; for each patient. A LOESS regression line with 95 % confidence interval has been
added.
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Figure 3 Quantile—quantile plot of Cholesky-transformed residuals of post-treatment observations
for Modelg, calculated using the posterior predictive mode of the baseline CD4 value i; and the
latent scaling variable ib,.; for each patient.
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Figure 4 Plot of Cholesky-transformed residuals of post-treatment observations for Modelg
against time from initiation of HAART, calculated using the posterior predictive mode of the
baseline CD4 value #; and the latent scaling variable ii,.; for each patient. A LOESS regression
line with 95 % confidence interval has been added.
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Figure 5 Plots of Cholesky-transformed residuals of pre- (a,b) and post- (c,d) treatment
observations for Modelg, calculated based on 1000 draws from the approximate posterior
predictive distribution of the latent variables for each patient. The quantile-quantile plots (a,c)
show the 2.5th, 50th and 97.5th percentiles of the sample quantiles for each theoretical quantile
corresponding to the total number of observations. (b) and (d) show boxplots of the mean
residual across repeated samples, with observations grouped according to the nearest multiple of 6
months.
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Figure 6 Plot of CD4 counts relative to the initiation of HAART for a simulated cohort of 100
patients based on Modelg.
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3 Model fitting to simulated data

In order to check that the use of natural cubic splines would be able to recover non-
linear functions for ¢ () and ¢2 (u]), even if the probability model as a whole were
not correctly specified, we simulated cohorts of patients based on a modified version of
Modelg. The point estimates of parameters were used as obtained from the UK Register
of Seroconverters dataset, but to simplify the analysis the recovery of CD4 counts after
initiation of treatment was assumed to depend only on the ‘true’ CD4 value at baseline
and not on the time elapsed from seroconversion to initiation. Furthermore, ¢; () and
¢2 (u]) were modified to follow non-linear sigmoidal functions:

15
1+exp(=0.5 * (u] —15))
~ 2
 1+exp(=0.5* (uf —20))

o (uf)=15+

¢ (1)

Twelve cohorts of 250 patients were generated, using the observation and treatment
initiation schedule as described in Appendix 2, and Models was fitted to each cohort
— i.e. with a natural cubic spline function to approximate ¢ (1] ) and ¢, (), without
any dependence on the time from seroconversion to treatment initiation. The sample
size was chosen for convenience, as the maximum number of separate processes that
could be initiated from R using the cluster system available. Convergence of maximum
likelihood estimates of the model parameters was achieved for 10/12 of these simulated
cohorts. The fitted functions for ¢ (1) and ¢, () in each case are shown in Figures 7
and 8, respectively. A histogram of the ‘true’ CD4 values at treatment initiation for each
patient in the first cohort is shown in Figure 9.

The plots of the fitted functions for ¢, (u}) and ¢, () indicate that natural cubic
splines can be used to approximate non-linear relationships between latent variables,
even if the probability model as a whole is not completely correctly specified. How-
ever, the natural cubic splines are constrained to a linear function beyond the upper
and lower boundary knots, and this clearly affects the ability of the approach to model
response to treatment in patients with very high or very low baseline CD4 at treatment
initiation. Adding more knots to the natural cubic spline basis would allow more flexibil-
ity in the fitted function, but at the cost of reduced computational stability. Hence these
plots indicate that caution is required when interpreting predictions or attempting to
draw inferences regarding patients with unusually high or low CD4 values at treatment
initiation, and reinforce the general principle that fitted relationships should not be ex-
trapolated beyond the range of values observed in the dataset under analysis.
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Figure 7 Plots of estimates of ¢1 (i} ] (black curved line, with dotted 95 % CI) obtained by

fitting Models to 12 simulated cohorts of 250 patients. The function specified as used to generate
the data is shown in red. The vertical black lines show the positions of knots for restricted natural

cubic spline basis.




Figure 8 Plots of estimates of ¢2 (u:’) (black curved line, with dotted 95 % Cl) obtained by

fitting Models to 12 simulated cohorts of 250 patients. The function specified as used to generate
the data is shown in red. The vertical black lines show the positions of knots for restricted natural

cubic spline basis.
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Figure 9 Histogram of ‘true’ CD4 values at treatment initiation for each patient in the first
cohort of the simulation study.
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