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Simulating competing risks data under the pro-
portional subdistribution hazards model

Let Ti denote the time of the first event for subject i, and δi the type of that
first event (where δi = 1 denotes the event of interest and δi = 2 any competing
risk, without loss of generality). Let p(xi) = Pr(Ti < ∞, δi = 1 | xi) be the
probability of experiencing the event of interest for a subject with covariate
vector xi, and p0 = p(0) is this probability for an individual with the ‘reference’
covariate vector. p(xi) = 1 for all xi implies that the event of interest will
eventually occur for every subject. q(xi) = 1− p(xi) = Pr(Ti <∞, δi = 2 | xi)
is the probability of experiencing the competing risk, and q0 = 1− p0.

In a proportional subdistribution hazards model with parameter vector β, exp(βp)
is the subdistribution hazard ratio associated with a one-unit increase in the pth
component of the covariate vector.

A proportional subdistribution hazards model can be obtained by defining the
subdistribution for the event of interest as

F (t;xi) = Pr(Ti ≤ t, δi = 1 | xi)

= 1− [1− p0 {1− exp(−t)}]exp(βxi) .

That we have the desired model can be verified by using the relation

F (t;xi) = 1− exp

{
−
∫ t

0

γ(s;xi) ds

}
to obtain

γ(t;xi) =
p0 exp(−t)

1− p0(1− exp(−t))
exp(βxi)

= γ0(t) exp(βxi)

To simulate the competing risks data, we first generate the event type δi for
each subject using a binomial random variable with the probability of the event
of interest occurring as the first event:

Pr(δi = 1 | xi) = 1− (1− p0)exp(βxi)
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If the simulated δi = 1, the distribution of event times is

Pr(Ti ≤ t | δi = 1,xi) =
Pr(Ti ≤ t, δi = 1 | xi)

Pr(δi = 1 | xi)

=
1− [1− p0 {1− exp(−t)}]exp(βxi)

1− (1− p0)exp(βxi)
,

and we can use the inverse of this cumulative distribution function to simulate
event times Ti from simulated uniform random variables Ui ∼ U [0, 1] as

Ti = − log

((
1− Ui

[
1− (1− p0)exp(βxi)

])exp(−βxi) − (1− p0)

p0

)

If δi = 2, we can assign event times in any way we see fit, possibly including a
relationship with some covariate vector zi (which may include components of
xi). In our simulation study, we simply used exponentially distributed event
times for all individuals:

Pr(Ti ≤ t | δi = 2) = 1− exp(−t)

Censoring times Ci are simulated independently of event times, but may be
related to the covariates xi and/or zi. If end of follow-up is the only reason
for censoring, Ci may be fixed at a certain time, or generated from a uniform
distribution in the case of a clinical trial with a constant accrual rate.

For our simulations, we generated two potential censoring times for each in-
dividual: Ci1 and Ci2. Ci1 represented censoring due to end of study with
constant accrual, and was drawn from a uniform distribution U [0, cm], with cm
chosen so that the desired proportion of subjects pC1

would have a censoring
time prior to their event time Ti, using:

pC1
≈ Pr(Ci1 < Ti | xi = 0) =

1

cm
− e−cm .

In our simulations, we used pC1
= 0.1, so cm ≈ 10.

Ci2 represented censoring due to loss to follow-up, drawn independently from
an exponential distribution, depending on some covariate vector ηi (in our case,
age group):

Pr(Ci2 ≤ c | ηi) = 1− exp(−cλC exp(βCηi))

with λC chosen so that approximately pC2
= 10% of subjects with ηi = 0

(young) would have Ci2 < Ti:

pC2
≈ Pr(Ci2 < Ti | xi = 0, ηi = 0) =

λC
λC + 1

,

that is λC = 1/9, and βC varied across scenarios. Each individual’s censoring
time was taken as the first of either type, that is, Ci = min(Ci1, Ci2).

Each subject’s time-to-event Zi is then the minimum of Ti and Ci, and we
set δi = 0 if the subject is censored before experiencing an event (that is, if
Ci < Ti).
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