Additional file 1 for "The importance of censoring in competing risks analysis of the subdistribution hazard"

Mark W Donoghoe and Val Gebski

Simulating competing risks data under the proportional subdistribution hazards model

Let T_i denote the time of the first event for subject *i*, and δ_i the type of that first event (where $\delta_i = 1$ denotes the event of interest and $\delta_i = 2$ any competing risk, without loss of generality). Let $p(\boldsymbol{x}_i) = \Pr(T_i < \infty, \delta_i = 1 | \boldsymbol{x}_i)$ be the probability of experiencing the event of interest for a subject with covariate vector \boldsymbol{x}_i , and $p_0 = p(\mathbf{0})$ is this probability for an individual with the 'reference' covariate vector. $p(\boldsymbol{x}_i) = 1$ for all \boldsymbol{x}_i implies that the event of interest will eventually occur for every subject. $q(\boldsymbol{x}_i) = 1 - p(\boldsymbol{x}_i) = \Pr(T_i < \infty, \delta_i = 2 | \boldsymbol{x}_i)$ is the probability of experiencing the competing risk, and $q_0 = 1 - p_0$.

In a proportional subdistribution hazards model with parameter vector $\boldsymbol{\beta}$, $\exp(\beta_p)$ is the subdistribution hazard ratio associated with a one-unit increase in the *p*th component of the covariate vector.

A proportional subdistribution hazards model can be obtained by defining the subdistribution for the event of interest as

$$F(t; \boldsymbol{x}_i) = \Pr(T_i \le t, \delta_i = 1 \mid \boldsymbol{x}_i)$$

= 1 - [1 - p_0 {1 - exp(-t)}]^{exp(\boldsymbol{\beta}\boldsymbol{x}_i)}.

That we have the desired model can be verified by using the relation

$$F(t; \boldsymbol{x}_i) = 1 - \exp\left\{-\int_0^t \gamma(s; \boldsymbol{x}_i) \,\mathrm{d}s\right\}$$

to obtain

$$\begin{split} \gamma(t; \boldsymbol{x}_i) &= \frac{p_0 \exp(-t)}{1 - p_0 (1 - \exp(-t))} \exp(\boldsymbol{\beta} \boldsymbol{x}_i) \\ &= \gamma_0(t) \exp(\boldsymbol{\beta} \boldsymbol{x}_i) \end{split}$$

To simulate the competing risks data, we first generate the event type δ_i for each subject using a binomial random variable with the probability of the event of interest occurring as the first event:

$$\Pr(\delta_i = 1 \mid \boldsymbol{x}_i) = 1 - (1 - p_0)^{\exp(\boldsymbol{\beta}\boldsymbol{x}_i)}$$

If the simulated $\delta_i = 1$, the distribution of event times is

$$\Pr(T_i \le t \mid \delta_i = 1, \boldsymbol{x}_i) = \frac{\Pr(T_i \le t, \delta_i = 1 \mid \boldsymbol{x}_i)}{\Pr(\delta_i = 1 \mid \boldsymbol{x}_i)}$$
$$= \frac{1 - [1 - p_0 \{1 - \exp(-t)\}]^{\exp(\boldsymbol{\beta}\boldsymbol{x}_i)}}{1 - (1 - p_0)^{\exp(\boldsymbol{\beta}\boldsymbol{x}_i)}}$$

and we can use the inverse of this cumulative distribution function to simulate event times T_i from simulated uniform random variables $U_i \sim U[0, 1]$ as

$$T_{i} = -\log\left(\frac{\left(1 - U_{i}\left[1 - (1 - p_{0})^{\exp(\boldsymbol{\beta}\boldsymbol{x}_{i})}\right]\right)^{\exp(-\boldsymbol{\beta}\boldsymbol{x}_{i})} - (1 - p_{0})}{p_{0}}\right)$$

If $\delta_i = 2$, we can assign event times in any way we see fit, possibly including a relationship with some covariate vector \mathbf{z}_i (which may include components of \mathbf{x}_i). In our simulation study, we simply used exponentially distributed event times for all individuals:

$$\Pr(T_i \le t \mid \delta_i = 2) = 1 - \exp(-t)$$

Censoring times C_i are simulated independently of event times, but may be related to the covariates x_i and/or z_i . If end of follow-up is the only reason for censoring, C_i may be fixed at a certain time, or generated from a uniform distribution in the case of a clinical trial with a constant accrual rate.

For our simulations, we generated two potential censoring times for each individual: C_{i1} and C_{i2} . C_{i1} represented censoring due to end of study with constant accrual, and was drawn from a uniform distribution $U[0, c_m]$, with c_m chosen so that the desired proportion of subjects p_{C_1} would have a censoring time prior to their event time T_i , using:

$$p_{C_1} \approx \Pr(C_{i1} < T_i \mid x_i = 0) = \frac{1}{c_m} - e^{-c_m}.$$

In our simulations, we used $p_{C_1} = 0.1$, so $c_m \approx 10$.

 C_{i2} represented censoring due to loss to follow-up, drawn independently from an exponential distribution, depending on some covariate vector η_i (in our case, age group):

$$\Pr(C_{i2} \leq c \mid \boldsymbol{\eta}_i) = 1 - \exp(-c\lambda_{\rm C}\exp(\boldsymbol{\beta}_{\rm C}\boldsymbol{\eta}_i))$$

with $\lambda_{\rm C}$ chosen so that approximately $p_{\rm C_2} = 10\%$ of subjects with $\eta_i = 0$ (young) would have $C_{i2} < T_i$:

$$p_{C_2} \approx \Pr(C_{i2} < T_i \mid x_i = 0, \eta_i = 0) = \frac{\lambda_C}{\lambda_C + 1}$$

that is $\lambda_{\rm C} = 1/9$, and $\beta_{\rm C}$ varied across scenarios. Each individual's censoring time was taken as the first of either type, that is, $C_i = \min(C_{i1}, C_{i2})$.

Each subject's time-to-event Z_i is then the minimum of T_i and C_i , and we set $\delta_i = 0$ if the subject is censored before experiencing an event (that is, if $C_i < T_i$).