Additional file 1 for "The importance of censoring in competing risks analysis of the subdistribution hazard"

Mark W Donoghoe and Val Gebski

Simulating competing risks data under the proportional subdistribution hazards model

Let T_{i} denote the time of the first event for subject i, and δ_{i} the type of that first event (where $\delta_{i}=1$ denotes the event of interest and $\delta_{i}=2$ any competing risk, without loss of generality). Let $p\left(\boldsymbol{x}_{i}\right)=\operatorname{Pr}\left(T_{i}<\infty, \delta_{i}=1 \mid \boldsymbol{x}_{i}\right)$ be the probability of experiencing the event of interest for a subject with covariate vector \boldsymbol{x}_{i}, and $p_{0}=p(\mathbf{0})$ is this probability for an individual with the 'reference' covariate vector. $p\left(\boldsymbol{x}_{i}\right)=1$ for all \boldsymbol{x}_{i} implies that the event of interest will eventually occur for every subject. $q\left(\boldsymbol{x}_{i}\right)=1-p\left(\boldsymbol{x}_{i}\right)=\operatorname{Pr}\left(T_{i}<\infty, \delta_{i}=2 \mid \boldsymbol{x}_{i}\right)$ is the probability of experiencing the competing risk, and $q_{0}=1-p_{0}$.

In a proportional subdistribution hazards model with parameter vector $\boldsymbol{\beta}, \exp \left(\beta_{p}\right)$ is the subdistribution hazard ratio associated with a one-unit increase in the p th component of the covariate vector.

A proportional subdistribution hazards model can be obtained by defining the subdistribution for the event of interest as

$$
\begin{aligned}
F\left(t ; \boldsymbol{x}_{i}\right) & =\operatorname{Pr}\left(T_{i} \leq t, \delta_{i}=1 \mid \boldsymbol{x}_{i}\right) \\
& =1-\left[1-p_{0}\{1-\exp (-t)\}\right]^{\exp \left(\boldsymbol{\beta} \boldsymbol{x}_{i}\right)} .
\end{aligned}
$$

That we have the desired model can be verified by using the relation

$$
F\left(t ; \boldsymbol{x}_{i}\right)=1-\exp \left\{-\int_{0}^{t} \gamma\left(s ; \boldsymbol{x}_{i}\right) \mathrm{d} s\right\}
$$

to obtain

$$
\begin{aligned}
\gamma\left(t ; \boldsymbol{x}_{i}\right) & =\frac{p_{0} \exp (-t)}{1-p_{0}(1-\exp (-t))} \exp \left(\boldsymbol{\beta} \boldsymbol{x}_{i}\right) \\
& =\gamma_{0}(t) \exp \left(\boldsymbol{\beta} \boldsymbol{x}_{i}\right)
\end{aligned}
$$

To simulate the competing risks data, we first generate the event type δ_{i} for each subject using a binomial random variable with the probability of the event of interest occurring as the first event:

$$
\operatorname{Pr}\left(\delta_{i}=1 \mid \boldsymbol{x}_{i}\right)=1-\left(1-p_{0}\right)^{\exp \left(\boldsymbol{\beta} \boldsymbol{x}_{i}\right)}
$$

If the simulated $\delta_{i}=1$, the distribution of event times is

$$
\begin{aligned}
\operatorname{Pr}\left(T_{i} \leq t \mid \delta_{i}=1, \boldsymbol{x}_{i}\right) & =\frac{\operatorname{Pr}\left(T_{i} \leq t, \delta_{i}=1 \mid \boldsymbol{x}_{i}\right)}{\operatorname{Pr}\left(\delta_{i}=1 \mid \boldsymbol{x}_{i}\right)} \\
& =\frac{1-\left[1-p_{0}\{1-\exp (-t)\}\right]^{\exp \left(\boldsymbol{\beta} \boldsymbol{x}_{i}\right)}}{1-\left(1-p_{0}\right)^{\exp \left(\boldsymbol{\beta} \boldsymbol{x}_{i}\right)}}
\end{aligned}
$$

and we can use the inverse of this cumulative distribution function to simulate event times T_{i} from simulated uniform random variables $U_{i} \sim U[0,1]$ as

$$
T_{i}=-\log \left(\frac{\left(1-U_{i}\left[1-\left(1-p_{0}\right)^{\exp \left(\boldsymbol{\beta} \boldsymbol{x}_{i}\right)}\right]\right)^{\exp \left(-\boldsymbol{\beta} \boldsymbol{x}_{i}\right)}-\left(1-p_{0}\right)}{p_{0}}\right)
$$

If $\delta_{i}=2$, we can assign event times in any way we see fit, possibly including a relationship with some covariate vector \boldsymbol{z}_{i} (which may include components of \boldsymbol{x}_{i}). In our simulation study, we simply used exponentially distributed event times for all individuals:

$$
\operatorname{Pr}\left(T_{i} \leq t \mid \delta_{i}=2\right)=1-\exp (-t)
$$

Censoring times C_{i} are simulated independently of event times, but may be related to the covariates \boldsymbol{x}_{i} and/or \boldsymbol{z}_{i}. If end of follow-up is the only reason for censoring, C_{i} may be fixed at a certain time, or generated from a uniform distribution in the case of a clinical trial with a constant accrual rate.

For our simulations, we generated two potential censoring times for each individual: $C_{i 1}$ and $C_{i 2}$. $C_{i 1}$ represented censoring due to end of study with constant accrual, and was drawn from a uniform distribution $U\left[0, c_{\mathrm{m}}\right]$, with c_{m} chosen so that the desired proportion of subjects $p_{\mathrm{C}_{1}}$ would have a censoring time prior to their event time T_{i}, using:

$$
p_{\mathrm{C}_{1}} \approx \operatorname{Pr}\left(C_{i 1}<T_{i} \mid x_{i}=0\right)=\frac{1}{c_{\mathrm{m}}}-e^{-c_{\mathrm{m}}}
$$

In our simulations, we used $p_{\mathrm{C}_{1}}=0.1$, so $c_{\mathrm{m}} \approx 10$.
$C_{i 2}$ represented censoring due to loss to follow-up, drawn independently from an exponential distribution, depending on some covariate vector $\boldsymbol{\eta}_{i}$ (in our case, age group):

$$
\operatorname{Pr}\left(C_{i 2} \leq c \mid \boldsymbol{\eta}_{i}\right)=1-\exp \left(-c \lambda_{\mathrm{C}} \exp \left(\boldsymbol{\beta}_{\mathrm{C}} \boldsymbol{\eta}_{i}\right)\right)
$$

with λ_{C} chosen so that approximately $p_{\mathrm{C}_{2}}=10 \%$ of subjects with $\eta_{i}=0$ (young) would have $C_{i 2}<T_{i}$:

$$
p_{\mathrm{C}_{2}} \approx \operatorname{Pr}\left(C_{i 2}<T_{i} \mid x_{i}=0, \eta_{i}=0\right)=\frac{\lambda_{\mathrm{C}}}{\lambda_{\mathrm{C}}+1}
$$

that is $\lambda_{\mathrm{C}}=1 / 9$, and β_{C} varied across scenarios. Each individual's censoring time was taken as the first of either type, that is, $C_{i}=\min \left(C_{i 1}, C_{i 2}\right)$.

Each subject's time-to-event Z_{i} is then the minimum of T_{i} and C_{i}, and we set $\delta_{i}=0$ if the subject is censored before experiencing an event (that is, if $\left.C_{i}<T_{i}\right)$.

