
Additional file 1. Derivations of the bounding formulas. 

Let 1 2profile ,Rate ( )x x t  denote the (instantaneous) disease rate at follow-up time t , for people in the 

population with 1 2profile ,x x . Let 
1 2class ,Rate ( )c c t  denote the (instantaneous) arrival rate in the study 

population for the unknown components for the class 1 2,c c  sufficient causes at follow-up time t  (i.e., the 

completion rate for a class 1 2,c c  at the time t ). Under the no redundancy assumption, the disease rates 

and the completion rates are related through the following equations: 
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              (A1.1) 

for 1{1,..., }i L  and 2{1,..., }.j L   

 Let class intRate ( )t  denote the rate of completion at a time t  for any interaction class, and 

class anyRate ( )t , the rate of completion at a time t  for any class (all-unknown, main-effect, or interaction). 

Under the no redundancy assumption, we have that 
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and 
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The following derivations make frequent use of the peril index (PLoS ONE 2013;8: e67424). A ‘peril’ is 

identically a cumulative rate exponentiated, the reciprocal of a cumulative risk complement, and a one plus a 

cumulative odds, that is, 
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and is an index no less than 1.  



 The cumulative completion risk over (0, T ) for a specific class ,i j  sufficient-cause interaction is  
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                           (A1.5) 

for 1{1,..., }i L  and 2{1,..., }j L . The cumulative completion risk over (0, T ) for the global 

sufficient-cause interaction is 
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The cumulative completion risk over (0, T ) for any class is 
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                          (A1.7) 

 To set a lower bound on class ,Risk i j  ( 1{1,..., }i L , 2{1,..., }j L ), we first establish the following 

inequalities from (A1.1): 
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for any 1( ' ) {1,..., }i i L   and 2( ' ) {1,..., }.j j L   Therefore  
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         (A1.9) 

 To set an upper bound on class ,Risk i j  ( 1{1,..., }i L , 2{1,..., }j L ), Again from (A1.1), we have  
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                                          (A1.10) 
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 To set a lower bound on class intRisk  , we first establish the following inequalities with the use of 

contrast coefficients described in the text. Again from (A1.1), we have 
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for any legitimate contrast coefficients 
11( ,..., )Lu u  and 

21( ,..., )Lv v . Therefore, 
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 To set an upper bound on class intRisk  , from (A1.1)~(A1.3) we have 
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for all t  in (0, T ), which implies 
1 2

profile ,
class int class any

1 1

Peril Peril Peril .
L L

i j

i j


 

 

   Therefore 

         
1 2 1 2

1

UB profile , profile ,
class int

1 1 1 1

Risk 1 Peril 1 1 Risk .
L L L L

i j i j

i j i j



 


   

 
     

 
          (A1.15) 

 Finally, the bounds on the relative prevalence of sufficient-cause interactions are functions of the above 

bounds on the cumulative completion risks, as presented in the text.   




