Additional File 1: Properties of the log-normal distribution, derivation of the variance of the log-Exponential distribution and simulation study R code

Department of Statistical Science, University College London, WC1E 6BT, UK

Relationship between the median of a log-normal random variable and the mean of its log-transform

Let

$$
T_{i j} \sim \log \mathcal{N}\left(\mu_{j}, \sigma_{j}^{2}\right)
$$

Defining m_{j} as the median of the probability distribution of $T_{i j}, m_{j}$ is the value such that

$$
\mathbb{P}\left(T_{i j} \leq m_{j}\right)=\frac{1}{2}
$$

Since the natural logarithm is a monotonic increasing function of $T_{i j}$, it follows that

$$
\mathbb{P}\left(\log \left(T_{i j}\right) \leq \log \left(m_{j}\right)\right)=\frac{1}{2}
$$

Recalling that $\log \left(T_{i j}\right) \sim \mathcal{N}\left(\mu_{j}, \sigma_{j}^{2}\right)$, then

$$
Z_{i j}=\frac{\log \left(T_{i j}\right)-\mu_{j}}{\sigma_{j}} \sim \mathcal{N}(0,1) .
$$

[^0]Thus,

$$
\begin{aligned}
& \mathbb{P}\left(\log \left(T_{i j}\right) \leq \log \left(m_{j}\right)\right)=\frac{1}{2} ; \\
\Longrightarrow & \mathbb{P}\left(\frac{\log \left(T_{i j}\right)-\mu_{j}}{\sigma_{j}} \leq \frac{\log \left(m_{j}\right)-\mu_{j}}{\sigma_{j}}\right)=\frac{1}{2} ; \\
\Longrightarrow & \mathbb{P}\left(Z_{i j} \leq \frac{\log \left(m_{j}\right)-\mu_{j}}{\sigma_{j}}\right)=\frac{1}{2} .
\end{aligned}
$$

Hence,

$$
\frac{\log \left(m_{j}\right)-\mu_{j}}{\sigma_{j}}=\Phi^{-1}\left(\frac{1}{2}\right)=0
$$

where $\Phi^{-1}()$ denotes the inverse cumulative density function of a standard $\mathcal{N}(0,1)$ random variable. As a result

$$
\begin{aligned}
\log \left(m_{j}\right)-\mu_{j} & =0 \\
\Longrightarrow m_{j} & =\exp \left(\mu_{j}\right), \text { as required. }
\end{aligned}
$$

Derivation of variance of log-transformed outcome

Let

$$
T_{i j} \sim \log \mathcal{N}\left(\mu_{j}, \sigma_{j}^{2}\right)
$$

Then

$$
\operatorname{Var}\left(T_{i j}\right)=\left(\exp \left(\sigma_{j}^{2}\right)-1\right) \exp \left(2 \mu_{j}+\sigma_{j}^{2}\right)=\phi_{j}^{2}
$$

It follows that

$$
\begin{aligned}
\left(\exp \left(\sigma_{j}^{2}\right)-1\right) \exp \left(\sigma_{j}^{2}\right) \exp \left(2 \mu_{j}\right) & =\phi_{j}^{2} \\
\exp \left(2 \mu_{j}\right) \exp \left(2 \sigma_{j}^{2}\right)-\exp \left(2 \mu_{j}\right) \exp \left(\sigma_{j}^{2}\right)-\phi_{j}^{2} & =0 \\
\exp \left(2 \sigma_{j}^{2}\right)-\exp \left(\sigma_{j}^{2}\right)-\frac{\phi_{j}^{2}}{\exp \left(2 \mu_{j}\right)} & =0 \\
\left(\exp \left(\sigma_{j}^{2}\right)-\frac{1}{2}\right)^{2}-\frac{1}{4}-\frac{\phi_{j}^{2}}{\exp \left(2 \mu_{j}\right)} & =0 \\
\left(\exp \left(\sigma_{j}^{2}\right)-\frac{1}{2}\right)^{2} & =\frac{1}{4}+\frac{\phi_{j}^{2}}{\exp \left(2 \mu_{j}\right)} \\
\exp \left(\sigma_{j}^{2}\right)-\frac{1}{2} & =\sqrt{\frac{1}{4}+\frac{\phi_{j}^{2}}{\exp \left(2 \mu_{j}\right)}} \\
\exp \left(\sigma_{j}^{2}\right) & =\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{\phi_{j}^{2}}{\exp \left(2 \mu_{j}\right)}} \\
\sigma_{j}^{2} & =\log \left[\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{\phi_{j}^{2}}{\exp \left(2 \mu_{j}\right)}}\right] \text { as required. }
\end{aligned}
$$

Derivation of Variance of Logarithm of an Exponential Random Variable

Let $X \sim \operatorname{Exp}(\lambda)$, then

$$
f_{X}(x ; \lambda)=\lambda \exp (-\lambda x) \quad(x>0)
$$

Consider $\mathbb{E}(\log (X))$:

$$
\begin{aligned}
\mathbb{E}(\log (X)) & =\int_{0}^{\infty} \log (x) \lambda \exp (-\lambda x) \mathrm{d} x \\
& \left.=\int_{0}^{\infty}[\log (y)-\log (\lambda)] \exp (-y) \mathrm{d} y \quad \text { (using the substitution } y=\lambda x\right) \\
& =\gamma-\log (\lambda)
\end{aligned}
$$

where γ is the Euler-Mascheroni constant

$$
\gamma=\int_{0}^{\infty} \log (y) \exp (-y) \mathrm{d} y .
$$

The variance of $\log (X)$ is given by

$$
\begin{equation*}
\operatorname{Var}(\log (X))=\mathbb{E}\left[(\log (X))^{2}\right]-\mathbb{E}(\log (X))^{2} \tag{1}
\end{equation*}
$$

Consider $\mathbb{E}\left[(\log (X))^{2}\right]$:

$$
\begin{aligned}
\mathbb{E}\left[(\log (X))^{2}\right] & =\int_{0}^{\infty}(\log (x))^{2} \lambda \exp (-\lambda x) \mathrm{d} x \\
& =\int_{0}^{\infty}(\log (y)-\log (\lambda))^{2} e^{-y} \mathrm{~d} y \\
& =\int_{0}^{\infty}(\log (y))^{2} e^{-y} \mathrm{~d} y-2 \log (\lambda) \int_{0}^{\infty} \log (y) e^{-y} \mathrm{~d} y+(\log (\lambda))^{2} \int_{0}^{\infty} e^{-y} \mathrm{~d} y \\
& =\frac{\pi^{2}}{6}+\gamma^{2}-2[\gamma-\log (\lambda)]+(\log (\lambda))^{2} \\
& =\frac{\pi^{2}}{6}+(\log (\lambda)-\gamma)^{2}
\end{aligned}
$$

and substitution of the above into (1) yields

$$
\begin{aligned}
\operatorname{Var}(\log (X)) & =\frac{\pi^{2}}{6}+(\log (\lambda)-\gamma)^{2}-(\gamma-\log (\lambda))^{2} \\
& =\frac{\pi^{2}}{6} \text { as required. }
\end{aligned}
$$

R Code for the Simulation Study Presented in Table 1

The function 'logn_sim_study' simulates datasets of a pre-specified size (n) drawn from lognormal distributions with pre-specified medians m_{1}, m_{2} and standard deviations ϕ_{1} and ϕ_{2} for groups 1 and 2. Simulated data for the groups are then compared using: (1) a two-sample t-test on log-transformed outcomes, (2) A Mann-Whitney U test on untransformed outcomes, (3) A two-sample t-test on untransformed outcomes. This code is repeated 100000 times, for each scenario, for the simulation study presented in Table 1 of the paper.

```
#Argument 'pars' is a 5x1 vector of parameters where
#pars[1] = Pre-specified median for group 1
```

```
#pars[2] = Pre-specified median for group 2
#pars[3] = Pre-specified standard deviation (untransformed) for group 1
#pars[4] = Pre-specified standard deviation (untransformed) for group 2
#pars[5] = n = Analytical sample size (calculated using Equation (4) from the paper).
logn_sim_study<-function(pars){
    median1<-pars[1]
    median2<-pars[2]
    phi1<-pars[3]
    phi2<-pars [4]
    n<-pars [5]
```

```
#Recover log-scale means using the pre-specified medians
    mu1<-log(median1)
    mu2<-log(median2)
```

\#Recover standard deviations on the log-scale using the pre-specified medians, \#untransformed variances and the Equation (2) from the paper.

```
sigma1<-sqrt(log(1/2+sqrt(1/4+((phi1^2)/(median1^2)))))
sigma2<-sqrt(log(1/2+sqrt(1/4+((phi2^2)/(median2^2)))))
```

\#Simulate n values from log-normal distributions for each of groups 1 and 2.
\#For group 1: log-scale mean $=$ mu1, standard deviation of \#log-transformed outcomes = sigma1;
\#For group 2: log-scale mean $=$ mu2, standard deviation of \#log-transformed outcomes = sigma2

```
y1<-rlnorm(n,meanlog=mu1,sdlog=sigma1)
```

y2<-rlnorm(n,meanlog=mu2,sdlog=sigma2)
\#Perform a two-sample t-test on log-transformed outcomes.
log_ttest<-t.test (log(y1), log(y2), var.equal=TRUE)
\#Extract the P-value from the two-sample t-test on log-transformed outcomes. logn_pval<-log_ttest\$p.value
\#Create a binary variable that equals 1 if the null hypothesis is rejected \#and 0 otherwise.
logn_reject<-ifelse(logn_pval<0.05,1,0)
\#Perform a Mann-Whitney U test on untransformed outcomes. mw_test<-wilcox.test(y1,y2,alternative="two.sided")
\#Extract the P-value from the Mann-Whitney U test on untransformed outcomes. mw_pval<-mw_test\$p.value
\#Create a binary variable that equals 1 if the null hypothesis is rejected \#and 0 otherwise.

```
mw_reject<-ifelse(mw_pval<0.05,1,0)
```

\#Perform a two-sample t-test on untransformed outcomes. ttest<-t.test(y1,y2,var.equal=TRUE)
\#Extract the P-value from the two-sample t-test on log-transformed outcomes. t_pval<-ttest\$p.value
\#Create a binary variable that equals 1 if the null hypothesis is rejected \#and 0 otherwise.

```
        t_reject<-ifelse(t_pval<0.05,1,0)
```

\#Produce a table of results and output this.
results<-data.frame (logn_pval,logn_reject,mw_pval,mw_reject,t_pval,t_reject)
names (results)<-c("log_N_P_Value", "log_N_Reject", "MW_P_Value", "MW_Reject",
"t_test_P_Value", "t_test_Reject")
return(results)
\}

R Code for the Simulation Studies Presented in Tables 2 and 3

The function 'exponential_sim_study' simulates datasets of a pre-specified size (n) drawn from Exponential distributions with pre-specified rates $\lambda_{1}=\log (2) / m_{1}, \lambda_{2}=\log (2) / m_{2}$ for groups 1 and 2 respectively. Simulated data for the groups are then compared using: (1) a two-sample t-test on log-transformed outcomes, (2) A Mann-Whitney U test on untransformed outcomes, (3) A two-sample t-test on untransformed outcomes. This code is repeated 100000 times, for each senario, for the simulation study presented in Tables 2 and 3 of the paper.

```
#Argument 'pars' is a 3x1 vector of parameters where
#pars[1] = Pre-specified median for group 1
#pars[2] = Pre-specified median for group 2
#pars[3] = n = Analytical sample size (calculated using Equation (4) from
#the paper for simulation study in Table 2, calculated using Equation (5)
#from the paper for simulation study in Table 3).
exponential_sim_study<-function(pars){
    median1<-pars[1]
    median2<-pars[2]
    n<-pars [3]
#Compute the rates 'lambda1' for group 1 and 'lambda2' for group 2.
    lambda1<-log(2)/median1
    lambda2<-log(2)/median2
```

\#Simulate n values from Exponential distributions for each of groups 1 and 2.
\#y1 = simulated values for group 1;
\#y2 = simualted values for group 2.
$\mathrm{y} 1<-\mathrm{rexp}(\mathrm{n}$, rate=$=1 \mathrm{mbda} 1)$
$\mathrm{y} 2<-\mathrm{rexp}(\mathrm{n}$, rate=$=1 \mathrm{mbda} 2)$
\#Take log-transforms of simulated outcomes for groups 1 and 2, denoting

```
#these 'logy1' and 'logy2' respectively.
    logy1<-log(y1)
    logy2<-log(y2)
```

\#Perform a two-sample t-test on log-transformed outcomes.
\log _ttest<-t.test $(\log (y 1), \log (y 2)$, var.equal=TRUE)
\#Extract the P-value from the two-sample t-test on log-transformed outcomes.
logn_pval<-log_ttest\$p.value
\#Create a binary variable that equals 1 if the null hypothesis is rejected
\#and 0 otherwise.
logn_reject<-ifelse(logn_pval<0.05,1,0)
\#Perform a Mann-Whitney U test on untransformed outcomes.
mw_test<-wilcox.test(y1,y2,alternative="two.sided")
\#Extract the P-value from the Mann-Whitney U test on untransformed outcomes.
mw_pval<-mw_test\$p.value
\#Create a binary variable that equals 1 if the null hypothesis is rejected
\#and 0 otherwise.
mw_reject<-ifelse(mw_pval<0.05,1,0)
\#Perform a two-sample t-test on untransformed outcomes.
ttest<-t.test(y1,y2,var.equal=TRUE)
\#Extract the P-value from the two-sample t-test on log-transformed outcomes.
t_pval<-ttest\$p.value
\#Create a binary variable that equals 1 if the null hypothesis is rejected \#and 0 otherwise.
t_reject<-ifelse(t_pval<0.05,1,0)
\#Produce a table of results and output this.

```
results<-data.frame(logn_pval,logn_reject,mw_pval,mw_reject,t_pval,t_reject)
names(results)<-c("log_N_P_Value","log_N_Reject","MW_P_Value", "MW_Reject",
    "t_test_P_Value","t_test_Reject")
return(results)
```

\}

[^0]: *E-mail address: a.o’keeffe@ucl.ac.uk; Corresponding author

