Assessing the effect of a partly unobserved, exogenous, binary time-dependent covariate on survival probabilities using generalised pseudo-values

Ulrike Pötschger^{1,2}, Harald Heinzl², Maria Grazia Valsecchi³, Martina Mittlböck^{2*}

-APPENDIX-

Section A: Properties of the $1 \rightarrow 2$ pseudo-value

Consider a value z, $0 \le z \le t^{search}$, and let $\hat{S}(t^*|T \ge z)$ denote the survival propability at t^* estimated by Kaplan-Meier based on all r patients still at risk at z. The common pseudo-value [1] for the *k*-th patient, k = 1...r, is now defined as

$$\hat{U}_{k} = r\hat{S}(t^{*}|T \ge z) - (r-1)\hat{S}^{-k}(t^{*}|T \ge z).$$
(1)

Let z_k denote the waiting time of patient k which is set to, say, z+1, for patients in state 0 at z. Now $Z_k = (\min(z_k, z), I(z_k \le z))$ is the waiting time history of patient k up to time z. Since Z_k is a vector of baseline variables at z the arguments with respect to the asymptotic properties of the pseudo-values of Jacobsen and Martinussen [2] apply in analogy.

Now $((\tilde{T}_k - z, D_k), Z_k)$, k = 1...r, can be considered as i.i.d. replicates of the population at risk at z. Using the von Mises expansion the pseudo-value can be expressed as

$$\hat{U}_{k} = \theta + \dot{\psi} \left(\tilde{T}_{k} - z, D_{k} \right) + o_{p} \left(1 \right)$$

where $\theta = P(T > t^* | T \ge z) = S(t^* | T \ge z)$ denotes the survival probability at t^* of the population at risk at z; and $\hat{S}(t^* | T \ge z)$ is an asymptotically unbiased estimate of θ . Jacobson and Martinussen [2] showed that

$$E\left[\psi\left(\tilde{T}_{k}-z,D_{k}\right)|Z_{k}\right]=\theta_{k}-\theta.$$

Here, $\theta_k = P(T_k > t^* | T_k \ge z, Z_k) = S(t^* | T \ge z, Z_k)$ is the survival probability at t^* conditional on both, being alive at z and the waiting time history of patient k up to z.

Consequently it follows that

$$E\left[\hat{U}_{k}\right] = \theta_{k} + o_{p}\left(1\right).$$

By varying z between 0 and t^{search} , a plethora of pseudo-values could be computed. However, the primary interest is in values of z that correspond to actually observed waiting times w_i , i = 1...m. Given $z = w_i$ and a patient with $z_k = w_i$, then

$$\theta_k = S\left(t^* \middle| T \ge w_i, W = w_i\right) = \int_{w_i}^{t^*} \lambda_{12}\left(v, v - w_i\right) dv$$

which is the quantity to be estimated in the main paper.

Section B: Waiting time distribution in patients with a donor

Here, the density $f_{01}(w)$ of partly unobservable times to donor identification (waiting times) in patients with a donor available is related to the density q(w) of observable waiting times up to t^{search} not prevented by competing risks, like death and early censoring represented by $\lambda_{02}(t)$ and $\lambda_{C}(t)$, respectively. Now,

$$q(w) = \frac{1}{p_m} \lambda_{01}(w) \exp\left[-\int_0^w \lambda_{01}(v) + \lambda_{02}(v) + \lambda_C(v) dv\right]$$

with
$$p_m = \int_{0}^{t^{search}} \lambda_{01}(x) \exp\left[-\int_{0}^{x} \lambda_{01}(v) + \lambda_{02}(v) + \lambda_{C}(v) dv\right] dx$$
, so that $\int_{0}^{t^{search}} q(w) dw = 1$. Here, p_m is

the expected proportion of patients with observed $0 \rightarrow 1$ transition in the population of patients with a donor available. Due to the competing risks $\lambda_{02}(t)$ and $\lambda_C(t)$, longer waiting times are underrepresented among the *m* patients with observed $0 \rightarrow 1$ transitions.

For the estimation of $S_1(t^*)$, the density $f_{01}(w)$ of times to donor identification of all patients with a donor available (includes patients with ceased donor search) is needed. This quantity is

$$f_{01}(w) = \lambda_{01}(w) \exp\left[-\int_{0}^{w} \lambda_{01}(v) dv\right]$$

and it is linked to q(w) by

$$f_{01}(w) = \frac{q(w) p_m}{\exp\left[-\int_0^w \lambda_{02}(v) + \lambda_C(v) dv\right]}.$$

Given W=w, the denominator represents the probability that a $0 \rightarrow 1$ transition can actually be observed at time *w*.

Section C: Generation of simulated data

Section C is concerned with the generation of simulated survival and waiting times. Parameter values used in the simulations can be found in Table S1.

Let $S_{Wb}(t; \omega, \vartheta) = \exp(-\omega t^{\vartheta})$ denote the survival function of a Weibull distribution for t ≥ 0 , where $\vartheta > 0$ is the shape parameter and $\omega > 0$ represents the scale parameter. Let $f_{Wb}(t; \omega, \vartheta)$ denote the corresponding density distribution.

For direct $0 \rightarrow 2$ transitions, the simulations are based on the parametric mixture survival function $S_0(t) = \pi_{02} S_{Wb}(t; \omega_{02}, \mathcal{G}_{02}) + (1 - \pi_{02}).$

Here, $(1-\pi_{02})$ is the proportion of cured patients and $S_0(t)$ converges to $(1-\pi_{02})$ with increasing t. This mimics the typical situation in paediatric oncology where the plateau in the survival function indicates the presence of long-term survivors (cured patients). π_{02} is the proportion of patients that are susceptible for a direct $0 \rightarrow 2$ transition with corresponding survival function $S_{Wb}(t; \omega_{02}, \mathcal{G}_{02})$. Until $t^{search} = t^* = 5$ years, the hazard functions for a $0 \rightarrow 2$ transition are

$$\lambda_{02}(t) = \lambda'_{02}(t) = \frac{\pi_{02}f_{Wb}(t;\omega_{02},\mathcal{G}_{02})}{S_0(t)}$$
 in the populations with and without donor available,

respectively. More details on parametric mixture survival function can be found in Sposto [4]. Additionally, times to $0 \rightarrow 1$ transitions (waiting times w) need to be simulated. It is assumed that a proportion of π_{01} patients have a donor available. For scenarios A-G, a log-normal waiting time distribution $f_{01}(w)$ with parameters μ_{01} and σ_{01} , truncated at t^{search} , is used. The cumulative density function of the log-normal distribution is for x>0

$$CDF(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\log(x)} e^{\left[-\frac{(\nu-\mu)^2}{2\sigma^2}\right]} d\nu$$

In scenario I, discrete waiting times at w=0.5, 1 and 3 years and the probability mass function $f_{01}(w) = 1/3$ are assumed.

For the population with a donor available and for a specific waiting time $w \le t$, the following form of the hazard function for a 1 \rightarrow 2 transition was used in the simulations:

$$\lambda_{12}(t,t-w) = r\lambda_{02}(t) + \lambda_T(t-w)$$

Here $\lambda_{12}(t,t-w)$ depends on both, the time elapsed since time zero and the time elapsed since the $0 \rightarrow 1$ transition at time w. The first term, $r\lambda_{02}(t)$, represents the long-term effect of the timedependent intervention, which is favourable when r<1. The second term, $\lambda_T(t-w)$, allows for additional short-term risks due to the intervention and follows a Weibull mixture distribution $S_T(t-w) = \pi_T S_{Wb}(t-w,\omega_T, \mathcal{G}_T) + (1-\pi_T)$. The proportion π_T represents the specific intervention related events in state 1 that would be observed in absence of any other competing events.

Section D: Software implementation

The proposed method can be straightforwardly implemented using standard routines available in the majority of statistical software packages. Firstly, Kaplan-Meier estimates are repeatedly computed to derive generalised pseudo-values; subsequently, a generalised linear model is fitted. In SAS, the procedure LIFETEST provides Kaplan-Meier estimates for survival probabilities. The procedure GENMOD can be used for fitting a generalised linear model. Note, that the model specification is done identically to the original pseudo-value approach, e.g. see Klein et al. [5] for details.

In R, the function 'survfit' in the package SURVIVAL can be used for Kaplan-Meier estimates. The generalised linear model can be estimated using the object 'geese' in the package GEEPACK. For a more detailed description of the technical implementation see Klein et al. [5].

	Survival times						Waiting times ¹		True survival probabilities ²				
Scenario		Transition $0 \rightarrow 2$			Transition $1 \rightarrow 2$				Transition $0 \rightarrow 1$				
		$1 - \pi_{02}$	$\omega_{_{02}}$	\mathcal{G}_{02}	r	π_{T}	ω_{T}	\mathcal{G}_{T}	π ₀₁	μ_{01}	σ_{01}	$S_0(5)$	$S_{1}(5)$
Ι	Discrete	0.18	0.150	1.5	0.1	0.15	3	1.3	0.75	-	-	0.333	0.620
A	Balduzzi 2005	0.4	0.629	1.3	0.33	0.18	8.5	2.5	0.25	log(0.4)	0.3	0.404	0.562
В	Gale 1998	0.18	0.179	1.5	0.1	0.35	3	1.3	0.4	log(0.5)	0.3	0.291	0.547
С	Goldstone 2008	0.5	0.210	1.8	0.3	0.16	10	1.5	0.4	log(0.7)	0.3	0.511	0.659
D	Locaciulli 2007	0.7	0.653	1.2	0.4	0.16	4	2.5	0.4	log(0.4)	0.3	0.703	0.703
Е	PH	0.18	0.179	1.5	0.75	0	-	-	0.4	log(0.5)	0.3	0.291	0.390
F	No diff.	0.5	0.210	1.8	1	0	-	-	0.4	log(0.7)	0.3	0.511	0.511
G	Late SCTs	0.18	0.150	1.5	0.1	0.15	3	1.3	0.45	log(2)	0.8	0.333	0.569

Additional file 1: Table S1: Specification of the simulated scenarios: parameter values and 'true' 5-year survival probabilities

1) $t^{search} = t^* = 5$ years

2) True survival probabilities $S_0(5)$ and $S_1(5)$ were calculated using computations and simulations in SAS and numerical integration in

Mathematica according to equation (3) and (2) of the main paper, respectively.

			wG	LM^1		WGLM	ad-hoc ²
	Donor	W	SE _{est} ³	SD _{sim} ⁴		SE _{est} ³	SD _{sim} ⁴
n=1000 ⁵	No Donor		0.125	0.128	_	0.125	0.128
	Yes		0.078	0.070		0.098	0.104
		0.5	0.164	0.158		0.172	0.168
		1	0.134	0.132		0.161	0.158
		3	0.106	0.083		0.191	0.177
$n=400^{5}$	No Donor		0.210	0.216		0.210	0.216
	Yes		0.124	0.112		0.156	0.171
		0.5	0.263	0.253		0.277	0.269
		1	0.224	0.211		0.269	0.254
		3	0.170	0.129		0.309	0.286

Additional file 1: Table S2: Model-based and Monte-Carlo standard-errors for simulation study 1

- 1) The weighted generalised linear model (wGLM) uses $\hat{V}_{i,1}(t^*)$ according to equation (6)
- 2) The weighted generalised linear model (wGLM) uses the ad-hoc correction suggested to estimate $\hat{V}_{i,1}(t^*)$ (with one repetition per observation per simulation run)
- 3) Mean of standard errors of the generalised linear model (empirical 'sandwich' estimator)
- 4) Standard deviations of the parameter estimates of 1000 simulation runs (Monte-Carlo standard deviations)
- 5) Entire sample with and without a donor with 25 % in every subgroup: without donor and donor found at *w*=0.5, 1 and 3, respectively

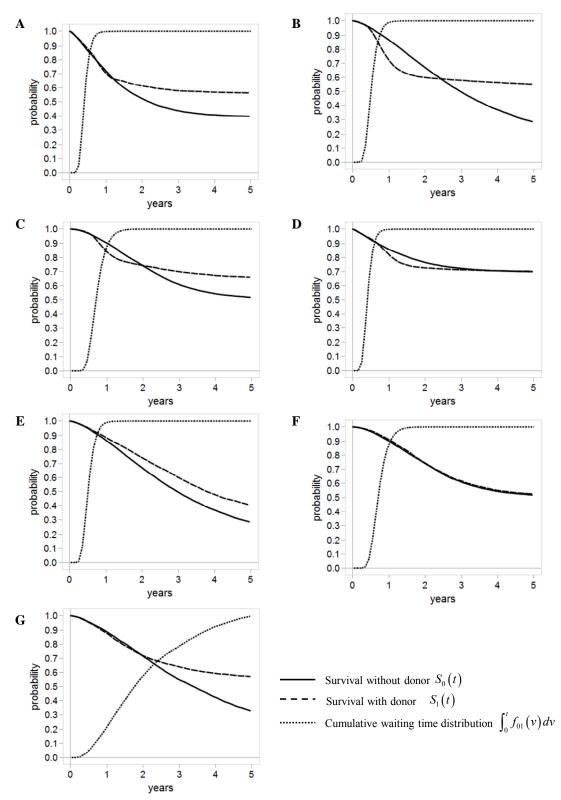
		<u>n=</u>	1000 ³	n=400 ³		
$eta_{_0}$	uniform censoring	${\rm SE}_{\rm est}^{-1}$	SD _{sim} ²	${\rm SE}_{\rm est}^{-1}$	SD _{sim} ²	
Α	0-11	0.053	0.051	0.085	0.082	
В	0-11	0.062	0.063	0.098	0.095	
С	0-11	0.067	0.068	0.107	0.107	
D	0-11	0.079	0.080	0.126	0.126	
Ε	0-11	0.062	0.062	0.098	0.095	
F	0-11	0.067	0.068	0.107	0.107	
G	0-11	0.060	0.063	0.095	0.097	
G	0-6	0.083	0.083	0.133	0.132	
$\beta_0 + \beta_1$						
Α	0-11	0.111	0.111	0.177	0.181	
B	0-11	0.087	0.092	0.137	0.142	
С	0-11	0.099	0.098	0.157	0.154	
D	0-11	0.101	0.105	0.161	0.162	
Ε	0-11	0.082	0.081	0.130	0.129	
F	0-11	0.087	0.087	0.138	0.142	
G	0-11	0.115	0.125	0.182	0.187	
G	0-6	0.149	0.154	0.239	0.246	
$\beta_{\rm l}$						
Α	0-11	0.123	0.122	0.196	0.196	
В	0-11	0.107	0.112	0.169	0.173	
С	0-11	0.119	0.118	0.190	0.184	
D	0-11	0.129	0.127	0.204	0.201	
Ε	0-11	0.103	0.101	0.163	0.161	
F	0-11	0.110	0.109	0.174	0.174	
G	0-11	0.131	0.132	0.208	0.204	
G	0-6	0.173	0.169	0.278	0.268	

Additional file 1: Table S3: Model-based and Monte-Carlo standard-errors for simulation study 2

1) Mean of standard errors of the generalised linear model (empirical 'sandwich' estimator)

2) Standard deviations of the parameter estimates of 1000 simulation runs (Monte-Carlo standard deviations)

3) entire sample with and without a donor



Additional file 1: Figure S1: Survival scenarios used in simulation study 2 with $t^{search}=5$ years

References

- 1. Andersen PK, Pohar Perme M: **Pseudo-observations in survival analysis**. *Statistical methods in medical research* 2010, **19**(1):71-99.
- 2. Jacobsen M, Martinussen T: A Note on the Large Sample Properties of Estimators Based on Generalized Linear Models for Correlated Pseudo-observations. Scandinavian Journal of Statistics 2016, 43(3):845-862.
- 3. Rotnitzky A, Robins JM: **Inverse Probability Weighting in Survival Analysis**. In: *Encyclopedia of Biostatistics*. Edited by Armitage P, Colton T: John Wiley; 2005.
- 4. Sposto R: **Cure model analysis in cancer: an application to data from the Children's Cancer Group**. *Statistics in Medicine* 2002, **21**(2):293-312.
- 5. Klein JP, Gerster M, Andersen PK, Tarima S, Pohar Perme M: **SAS and R functions to** compute pseudo-values for censored data regression. *Computer Methods and Programs in Biomedicine* 2008, **89**(3):289-300.