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-APPENDIX- 

Section A: Properties of the 1→2 pseudo-value 

Consider a value z , 0 searchz t  , and let  ˆ *S t T z  denote the survival propability at t* 

estimated by Kaplan-Meier based on all r  patients still at risk at z . The common pseudo-value 

[1] for the k-th patient, 1k r  , is now defined as 

   ˆ ˆˆ * ( 1) *k
kU rS t T z r S t T z     .  (1) 

Let kz  denote the waiting time of patient k  which is set to, say, 1z  , for patients in state 0 at z . 

Now     min , ,k k kZ z z z z    is the waiting time history of patient k  up to time z . Since kZ  

is a vector of baseline variables at z  the arguments with respect to the asymptotic properties of 

the pseudo-values of Jacobsen and Martinussen [2] apply in analogy.  

Now   , ,k k kT z D Z , 1k r  , can be considered as i.i.d. replicates of the population at risk at 

z . Using the von Mises expansion the pseudo-value can be expressed as 

   ˆ , 1k k k pU T z D o      

where    * *P T t T z S t T z       denotes the survival probabiltiy at *t  of the population 

at risk at z ; and  ˆ *S t T z  is an asymptotically unbiased estimate of  . 
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Jacobson and Martinussen [2] showed that 

 ,k k k kE T z D Z      
 . 

Here,    * , * ,k k k k kP T t T z Z S t T z Z       is the survival probability at t* conditional on 

both, being alive at z  and the waiting time history of patient k  up to z . 

Consequently it follows that 

 ˆ 1k k pE U o     . 

By varying z  between 0 and searcht , a plethora of pseudo-values could be computed. However, the 

primary interest is in values of z  that correspond to actually observed waiting times iw , 1i m 

. Given iz w  and a patient with k iz w , then 

   
*

12* , ,
i

t

k i i i

w

S t T w W w v v w dv        

which is the quantity to be estimated in the main paper.  

 

Section B: Waiting time distribution in patients with a donor 

Here, the density  01f w  of partly unobservable times to donor identification (waiting times) in 

patients with a donor available is related to the density  q w  of observable waiting times up to 

searcht  not prevented by competing risks, like death and early censoring represented by  02 t  and 

 C t , respectively. Now,  

         01 01 02

0

1
exp

w

C
m

q w w v v v dv
p

   
 

    
 
    
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with        01 01 02

0 0

exp

searcht x

m Cp x v v v dv dx   
 

    
 

  , so that  
0

1

searcht

q w dw  . Here, mp  is 

the expected proportion of patients with observed 01 transition in the population of patients 

with a donor available. Due to the competing risks  02 t  and  C t , longer waiting times are 

underrepresented among the m patients with observed 01 transitions. 

For the estimation of  1 *S t , the density  01f w  of times to donor identification of all patients 

with a donor available (includes patients with ceased donor search) is needed. This quantity is  

  

     01 01 01

0

exp
w

f w w v dv 
 

  
 
  

and it is linked to  q w  by 

   

   
01

02

0

exp

m

w

C

q w p
f w

v v dv 


 
  
 


. 

Given W=w, the denominator represents the probability that a 01 transition can actually be 

observed at time w. 

 

Section C: Generation of simulated data 

Section C is concerned with the generation of simulated survival and waiting times. Parameter 

values used in the simulations can be found in Table S1. 

Let    ; , expWbS t t     denote the survival function of a Weibull distribution for t≥0, where 

  > 0 is the shape parameter and   > 0 represents the scale parameter. Let  ; ,Wbf t   denote the 

corresponding density distribution. 
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For direct 02 transitions, the simulations are based on the parametric mixture survival function 

     0 02 02 02 02; , 1WbS t S t      .  

Here,  021   is the proportion of cured patients and  0S t  converges to  021   with increasing 

t. This mimics the typical situation in paediatric oncology where the plateau in the survival 

function indicates the presence of long-term survivors (cured patients). 02  is the proportion of 

patients that are susceptible for a direct 0→2 transition with corresponding survival function 

 02 02; ,WbS t   . Until tsearch=t*=5 years, the hazard functions for a 02 transition are 

     
 

02 02 02
02 02

0

; ,
' Wbf t

t t
S t

  
    in the populations with and without donor available, 

respectively. More details on parametric mixture survival function can be found in Sposto [4]. 

Additionally, times to 01 transitions (waiting times w) need to be simulated. It is assumed that a 

proportion of 01  patients have a donor available. For scenarios A-G, a log-normal waiting time 

distribution 01( )f w  with parameters 01  and 01 , truncated at tsearch, is used. The cumulative 

density function of the log-normal distribution is for x>0 
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 
 ²log( )
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CDF x e dv
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

   

In scenario I, discrete waiting times at w=0.5, 1 and 3 years and the probability mass function 

 01 1 3f w   are assumed. 

For the population with a donor available and for a specific waiting time w≤ t, the following form 

of the hazard function for a 12 transition was used in the simulations: 

     12 02, Tt t w r t t w       

Here  12 ,t t w   depends on both, the time elapsed since time zero and the time elapsed since the 

01 transition at time w. The first term,  02r t , represents the long-term effect of the time-

dependent intervention, which is favourable when r<1. The second term,  T t w  , allows for 

additional short-term risks due to the intervention and follows a Weibull mixture distribution 

     ; , 1T T Wb T T TS t w S t w        . The proportion T  represents the specific intervention 

related events in state 1 that would be observed in absence of any other competing events. 
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Section D: Software implementation 

The proposed method can be straightforwardly implemented using standard routines available in 

the majority of statistical software packages. Firstly, Kaplan-Meier estimates are repeatedly 

computed to derive generalised pseudo-values; subsequently, a generalised linear model is fitted. 

In SAS, the procedure LIFETEST provides Kaplan-Meier estimates for survival probabilities. The 

procedure GENMOD can be used for fitting a generalised linear model. Note, that the model 

specification is done identically to the original pseudo-value approach, e.g. see Klein et al. [5] for 

details.  

In R, the function ‘survfit’ in the package SURVIVAL can be used for Kaplan-Meier estimates. 

The generalised linear model can be estimated using the object ‘geese’ in the package GEEPACK. 

For a more detailed description of the technical implementation see Klein et al. [5]. 

 



Page 7 of 11 
  

 

Additional file 1: Table S1: Specification of the simulated scenarios: parameter values and ‘true’ 5-year survival probabilities  

Survival times   Waiting times1  True survival probabilities2 
Scenario  Transition 0→2 Transition 1→2  Transition 0→1   

 02 02  02  r T T  T   01 01 01  0 5S   1 5S 

I Discrete 0.18 0.150 1.5 0.1 0.15 3 1.3  0.75 - - 0.333 0.620 

A 
Balduzzi 

2005 
0.4 0.629 1.3 0.33 0.18 8.5 2.5 

 
0.25 log(0.4) 0.3 

0.404 0.562 

B 
Gale 
1998 

0.18 0.179 1.5 0.1 0.35 3 1.3 
 

0.4 log(0.5) 0.3 
0.291 0.547 

C 
Goldstone 

2008 
0.5 0.210 1.8 0.3 0.16 10 1.5 

 
0.4 log(0.7) 0.3 

0.511 0.659 

D 
Locaciulli 

2007 
0.7 0.653 1.2 0.4 0.16 4 2.5 

 
0.4 log(0.4) 0.3 

0.703 0.703 

E 
PH 

 
0.18 0.179 1.5 0.75 0 - - 

 
0.4 log(0.5) 0.3 

0.291 0.390 

F 
No diff. 

 
0.5 0.210 1.8 1 0 - - 

 
0.4 log(0.7) 0.3 

0.511 0.511 

G 
Late 
SCTs 

0.18 0.150 1.5 0.1 0.15 3 1.3 
 

0.45 log(2) 0.8 
0.333 0.569 

 

1) tsearch=t*=5 years 

2) True survival probabilities  0 5S  and  1 5S  were calculated using computations and simulations in SAS and numerical integration in 

Mathematica according to equation (3) and (2) of the main paper, respectively. 
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Additional file 1: Table S2: Model-based and Monte-Carlo standard-errors for simulation study 1 

    wGLM1  WGLM ad-hoc2 
Donor w  SEest

3 SDsim
4  SEest

3 SDsim
4 

n=10005 No Donor --  0.125 0.128  0.125 0.128 
Yes --  0.078 0.070  0.098 0.104 

   0.5  0.164 0.158  0.172 0.168 

   1  0.134 0.132  0.161 0.158 

   3  0.106 0.083  0.191 0.177 

n=4005 No Donor --  0.210 0.216  0.210 0.216 

 Yes --  0.124 0.112  0.156 0.171 

   0.5  0.263 0.253  0.277 0.269 

   1  0.224 0.211  0.269 0.254 

   3  0.170 0.129  0.309 0.286 
 

1) The weighted generalised linear model (wGLM) uses  ,1
ˆ *iV t  according to equation (6) 

2) The weighted generalised linear model (wGLM) uses the ad-hoc correction suggested to 

estimate  ,1
ˆ *iV t  (with one repetition per observation per simulation run) 

3) Mean of standard errors of the generalised linear model (empirical ‘sandwich’ estimator) 
4) Standard deviations of the parameter estimates of 1000 simulation runs (Monte-Carlo 

standard deviations) 
5) Entire sample with and without a donor with 25 % in every subgroup: without donor and 

donor found at w=0.5, 1 and 3, respectively 
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Additional file 1: Table S3: Model-based and Monte-Carlo standard-errors for simulation study 2 

  n=10003 n=4003 

0  uniform 
censoring 

SEest
1 SDsim

2 SEest
1 SDsim

2 

A 0-11 0.053 0.051 0.085 0.082
B 0-11 0.062 0.063 0.098 0.095 
C 0-11 0.067 0.068 0.107 0.107 
D 0-11 0.079 0.080 0.126 0.126 
E 0-11 0.062 0.062 0.098 0.095 
F 0-11 0.067 0.068 0.107 0.107 
G 0-11 0.060 0.063 0.095 0.097 
G 0-6 0.083 0.083 0.133 0.132 

0 + 1       

A 0-11 0.111 0.111 0.177 0.181
B 0-11 0.087 0.092 0.137 0.142 
C 0-11 0.099 0.098 0.157 0.154 
D 0-11 0.101 0.105 0.161 0.162 
E 0-11 0.082 0.081 0.130 0.129 
F 0-11 0.087 0.087 0.138 0.142 
G 0-11 0.115 0.125 0.182 0.187 
G 0-6 0.149 0.154 0.239 0.246 

1       

A 0-11 0.123 0.122 0.196 0.196
B 0-11 0.107 0.112 0.169 0.173 
C 0-11 0.119 0.118 0.190 0.184 
D 0-11 0.129 0.127 0.204 0.201 
E 0-11 0.103 0.101 0.163 0.161 
F 0-11 0.110 0.109 0.174 0.174 
G 0-11 0.131 0.132 0.208 0.204 
G 0-6 0.173 0.169 0.278 0.268 

 

1) Mean of standard errors of the generalised linear model (empirical ‘sandwich’ estimator) 
2) Standard deviations of the parameter estimates of 1000 simulation runs (Monte-Carlo 

standard deviations) 
3) entire sample with and without a donor 
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Additional file 1: Figure S1:Survival scenarios used in simulation study 2 with tsearch=5 years 
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