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Additional file 1.1: Detailed description for the Bootstrap approach 

Non-parametric bootstrapping is a statistical technique that can be used to construct an approximate sampling 

distribution for a statistic of interest, without the need for assumptions regarding the distribution of this statistic [1]. 

Several studies investigated the use of bootstrapping in health economics, e.g. for constructing confidence intervals 

for the incremental cost-effectiveness ratio and the incremental net benefit [2-4]. For a parameter of interest, we are 

interested in the value for the whole population β, which cannot be observed. Therefore, we try to find information 

about the value of this population parameter by drawing a random sample Y from this population and estimate �̂�(Y) 

the parameter of interest based on this sample. The use of bootstrapping enables us to find information about the 

relation between the population parameter β and its estimate �̂�(Y) by the relationship between an observed value for 

the parameter of interest �̂�(𝒚𝒐𝒃𝒔) and a value for the parameter of interest based on a bootstrap sample �̂�(Y*) [1, 3]. 

If non-parametric bootstrapping is applied, bootstrap sample Y* is constructed by resampling from the observed 

sample yobs with replacement [1, 3]. 

 The reasoning for applying non-parametric bootstrapping to reflect the uncertainty in distributions’ parameter 

estimates is explained by the fact that estimates from a clinical trial are almost always obtained based on a part of the 

total population. Hence, it would be incorrect to assume that the distributions’ parameters values estimated from the 

data are known with certainty, i.e. are correctly describing the entire population. There is a certain sampling error, as 

another clinical trial may yield different estimates for the distributions’ parameters. By bootstrapping trial data, other 

trial results are simulated and other estimates of parameters will be found, which may generate different probabilistic 

sensitivity analysis outcomes when Monte Carlo simulation is applied. In fact, as the size n of the sample increases, 

the estimates obtained by bootstrapping converge to the population value [1, 5]. 

In the Bootstrap approach the distributions’ parameters are repeatedly, say r times, estimated based on 

different bootstrap samples 𝒚𝒓
∗  of the original data set 𝒚𝒐𝒃𝒔, resulting in a set of {�̂�𝟏𝒓

∗ , �̂�𝟐𝒓
∗ , …, �̂�𝒊𝒓

∗ } parameter bootstrap-

estimates, where i equals the number of parameters required to define the distribution chosen to describe the stochastic 

uncertainty in the time-to-event data. These bootstrap samples 𝒚𝒓
∗ are obtained by resampling the original data set 

𝒚𝒐𝒃𝒔 with replacement, such that the sizes of the original data set and the bootstrap sample are the same. These r sets 

of parameter bootstrap estimates �̂�𝒊𝒓
∗  can then be used in the PSA, incorporating one set in each Monte Carlo sample. 

In short, this approach can be translated into the following four steps: 
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(1) Generate a feasible bootstrap sample of the original dataset, by resampling this dataset with replacement, 

such that the sample size of the bootstrap sample equals that of the original dataset. 

(2) Fit the pre-specified distribution(s) to the bootstrap sample and record the estimated parameter values, 

e.g. of the shape and rate parameters of a Gamma distribution. 

(3) Repeat (1) and (2) r times, where r equals the required number of PSA runs. 

(4) Perform the PSA, using a different set of the r parameter values to define the distribution(s) for each 

PSA run. 

Note that if multiple distributions are fitted in step (2) all of them need to be fitted on the same bootstrap sample to 

preserve correlation among distributions, which also applies to non-time-to-event distributions, such as Beta 

distributions to describe utilities, and other model parameters, such as probabilities.  

 The definition of a feasible bootstrap sample, as required in step (1), may vary between studies and can be 

difficult to decide on. When repeatedly fitting distributions to these random bootstrap samples, there might be samples 

for which it is not possible to fit a distribution. For example, a bootstrap sample might be drawn that contains only 

one time-to-event observation for a specific event, which makes it impossible to fit a Weibull distribution for the time 

to this event. This particular bootstrap sample can be considered infeasible for fitting a Weibull distribution, though it 

does contain information on the event of interest and, therefore, might be considered feasible. In such a scenario, it 

needs to be decided whether the bootstrap sample is to be excluded and a new sample will be drawn. Especially in 

case of small sample sizes or rare events these situations are likely to occur. Modelers need to be aware of this decision 

and should clearly communicate their choices in the corresponding publications. 
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Additional file 1.2: Detailed description for the MVNorm approach 

The uncertainty in distributions’ parameter estimates can be described by assuming these parameter estimates to be 

Normal distributed. This is appropriate for sufficiently large sample sizes according to the Central Limit Theorem, 

which states that for any population distribution of a parameter of interest, the distributions of the sample means �̅� 

will converge to Normal distributions as the sample size increases [4]. For a sufficient large sample size this indicates 

that the uncertainty surrounding an independent parameter can be defined according to its estimate �̂�(𝒚𝒐𝒃𝒔)  and the 

Standard Error of the Estimate 𝐒𝐄𝐄�̂�(𝒚𝒐𝒃𝒔): 

�̅� ~ 𝑵(�̂�(𝒚𝒐𝒃𝒔), 𝑺𝑬𝑬�̂�(𝒚𝒐𝒃𝒔)) Equation 1 

However, when estimating a multi-parameter distribution, these distribution’s parameters are likely to be correlated 

and it is, therefore, incorrect to define separate Normal distributions using Equation 1 for each of the parameters. 

However, multivariate Normal distributions can be used to draw correlated values for the parameters of interest. 

Multivariate Normal distributions are defined by parameter estimates {�̂�𝟏, �̂�𝟐, …, �̂�𝒌} and their variance-covariance 

matrix ∑
𝒌
: 

{�̅�𝟏, �̅�𝟐, …, �̅�𝒌} ~ 𝑵𝒌({�̂�𝟏, �̂�𝟐, …, �̂�𝒌}, ∑
𝒌
)  Equation 2 

Using multivariate Normal distributions, i.e. the MVNorm approach, the uncertainty surrounding the parameter 

estimates can be approximated using the following four steps: 

(1) Fit the pre-specified distribution to the original dataset and record the estimated parameter values, e.g. 

of the shape and rate parameters of a Gamma distribution, and (calculate) the variance-covariance matrix. 

(2) Define a multivariate Normal distribution from the parameters’ estimates and their variance-covariance 

matrix according to (1). 

(3) Draw r feasible sets of parameter values from the defined distribution (2), where r equals the required 

number of PSA runs. 

(4) Perform the PSA, using a different set of the r parameter values to define the distribution(s) for each 

PSA run. 
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The drawn sets of parameter values need to be assessed for their feasibility, i.e. whether the parameter values are 

appropriate for the pre-specified distributions. For example, if a Weibull distribution is selected to reflect stochastic 

uncertainty in time-to-event data, both the distribution’s shape and scale parameter values need to be larger than zero, 

whereas (multivariate) Normal distributions are defined for any real number and may generate negative values. This 

theoretical definition of feasible parameter values is straightforward, though there might be scenarios in which the 

drawn parameter values are theoretically feasible, but rather extreme in a practical sense. For example, consider a 

Weibull distribution with shape and scale parameters of respectively 6 and 150, estimated based on a small sample of 

time-to-event observations (e.g. n=25), i.e. there might be substantial uncertainty surrounding these estimates. A draw 

from the corresponding multivariate Normal distribution could return a value for the scale parameter of 300, which is 

a theoretically feasible value but extreme in a practice sense. This value for the scale parameter will, namely, result in 

an expected mean value of the corresponding time-to-event distribution that is approximately twice as high with regard 

to the expected value of the  scale parameter (i.e. 150). Although such extreme parameter values may have a substantial 

impact on modeling outcomes, it is hard to define which values are extreme but rather plausible and which are extreme 

and implausible. 
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Additional file 1.3: Description of the model used in the simulation study 

The model that is used in the simulation study is based on a basic disease progression model including three states: 

healthy (h), progressed (p), and death (d). The model contains two competing risks for patients in the healthy state, 

i.e. progression and death. A graphical representation of the disease progression model’s structure is presented below: 

Healthy Progressed DeathProgression
Death with
Progression

Death without Progression

 

Graphical representation of the model used in the simulation study 

Based on this disease progression model, two populations of patients were simulated to sample hypothetical trials 

from in the simulation study. The parameters defined and the distributions used to do so are defined in the table below. 

In this table, the control and experimental populations are referred to by a zero (0) and an one (1) in the parameter 

name, respectively. As can be seen in the table, the two populations differ in terms of treatment costs and survival in 

the progression state. As explained in the manuscript, the parameter uncertainty surrounding non-time-to-event related 

variables, i.e. the utilities (u) and costs (c) was reflected according to health economic modeling good practices 

guidelines. The parameter uncertainty in the defined time-to-event distributions, and their related parameters such as 

the probability of a competing risks occurring, were addressed according to the Bootstrap or MVNorm approach. 

Model 

Parameter 

Population Distribution PSA  

 

Description 

Time to Event    

p.hp.0 Probability = 0.6 According to approach. Probability of Progression  

t.hp.0 Weibull(shape=1, scale=200) According to approach. Time to Progression from Healthy 

t.hd.0 Weibull(shape=4, scale=150) According to approach. Time to Death from Health 

t.pd.0 Weibull(shape=6, scale=150) According to approach. Time to Death from Health 

p.hp.1 Probability = 0.6 According to approach. Probability of Progression  

t.hp.1 Weibull(shape=1, scale=200) According to approach. Time to Progression from Healthy 

t.hd.1 Weibull(shape=4, scale=150) According to approach. Time to Death from Health 

t.pd.1 Weibull(shape=5, scale=350) According to approach. Time to Death from Health 

Effectiveness    

u.healthy Utility = 0.9 Beta(shape1=9, shape2=1) Utility in Healthy 

u.diseased Utility = 0.6 Beta(shape1=60, shape2=40) Utility in Progressed 

Costs    

c.progressed.0 Cost = 10 Gamma(shape=10000, rate=1000) Costs per day 

c.progressed.1 Cost = 50 Gamma(shape=500, rate=10) Costs per day 
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Additional file 1.4: Description of the model used in the case study 

The discrete event simulation (DES) model that was used in the case study was defined on patient-level using 

AnyLogic software and according to the ISPOR-SMDM Modeling Good Research Practice Task Force guidelines [6]. 

The model was defined to have the same health states as the model that was used for the original evaluation of the 

CAIRO3 study: post-induction, re-induction, salvage, and death (see figure below) [7].  

 Weibull distributions [8] were used to define all health state-specific time-to-event parameters and were 

estimated from the CAIRO3 trial data using the fitdist function of the fitdistrplus [9] package in R Statistical Software 

[10]. Events, i.e. transitions between health states, were based on patient-specific processing times, which were 

randomly drawn from the estimated Weibull distributions. Competing risks were handled by selecting the first event 

to occur based on the respective observed event probabilities and their corresponding state-specific time-to-event 

distributions [11]. For example, for a patient that is entering the re-induction state a random number was compared to 

the chance of progression to determine whether the patient would survive and progress to the salvage therapy state. 

After the event was selected, the time to that event was randomly drawn from the corresponding Weibull distribution, 

i.e. time-to-progression or time-to-death.  

In the DES model, 10,000 patients were simulated per treatment strategy. Patient-level outcomes were 

calculated based on the time patients had spent in each health state and were summarized to enable comparison of the 

two treatment strategies on population level. The DES model was validated according to good practices guidelines by 

assuring no unnecessary detail was present, structured “walk-throughs”, comparing results with calculations by hand, 

extreme value analysis, trace analysis, sensitivity analysis, and cross validation with the model that was used for the 

original evaluation of the CAIRO3 study [12, 13].  

Post-Induction Re-Induction Salvage Death

Graphical representation of the model used in the case study 
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Additional file 1.5: Mean parameter estimates (including standard error) of the simulation study 

  Real n = 500 n = 100 n = 50 n = 25 

Parameter Value* True** Boot MVN True** Boot MVN True** Boot MVN True** Boot MVN 

p.hp.0 0.60 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.60 0.60 

    (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.000) (0.001) (0.001) (0.000) (0.002) (0.002) 

t.hp.0.shape 1.00 1.00 1.00 1.00 1.01 1.04 1.02 1.04 1.09 1.04 1.09 1.22 1.10 

    (0.000) (0.001) (0.001) (0.000) (0.002) (0.002) (0.000) (0.003) (0.003) (0.000) (0.006) (0.005) 

t.hp.0.scale 200.00 199.08 199.40 199.29 198.91 201.10 200.43 199.24 202.28 200.92 199.99 205.64 203.33 

    (0.000) (0.237) (0.237) (0.000) (0.559) (0.558) (0.000) (0.788) (0.786) (0.000) (1.155) (1.152) 

t.hd.0.shape 4.00 3.99 4.02 3.99 4.11 4.26 4.11 4.28 4.63 4.29 4.85 6.56 4.75 

    (0.000) (0.004) (0.004) (0.000) (0.011) (0.011) (0.000) (0.019) (0.017) (0.000) (0.142) (0.035) 

t.hd.0.scale 150.00 149.14 149.02 149.06 149.05 148.67 148.89 148.73 148.14 148.61 148.13 146.86 147.88 

    (0.000) (0.056) (0.056) (0.000) (0.128) (0.128) (0.000) (0.182) (0.182) (0.000) (0.268) (0.269) 

t.pd.0.shape 6.00 6.09 6.12 6.10 6.20 6.35 6.22 6.36 6.65 6.37 6.74 7.45 6.72 

    (0.000) (0.006) (0.006) (0.000) (0.013) (0.013) (0.000) (0.020) (0.020) (0.000) (0.038) (0.032) 

t.pd.0.scale 150.00 149.54 149.51 149.51 149.42 149.35 149.40 149.28 149.03 149.16 149.12 148.29 148.63 

    (0.000) (0.029) (0.029) (0.000) (0.066) (0.066) (0.000) (0.094) (0.094) (0.000) (0.139) (0.139) 

p.hp.1 0.60 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.60 0.60 

    (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.000) (0.001) (0.001) (0.000) (0.002) (0.002) 

t.hp.1.shape 1.00 1.02 1.02 1.02 1.04 1.06 1.04 1.06 1.11 1.06 1.12 1.24 1.12 

    (0.000) (0.001) (0.001) (0.000) (0.002) (0.002) (0.000) (0.003) (0.003) (0.000) (0.006) (0.005) 

t.hp.1.scale 200.00 197.24 197.44 197.37 198.06 198.07 197.68 198.91 199.70 198.86 198.94 201.34 199.87 

    (0.000) (0.231) (0.231) (0.000) (0.523) (0.524) (0.000) (0.728) (0.728) (0.000) (1.068) (1.068) 

t.hd.1.shape 4.00 3.97 4.00 3.97 4.08 4.22 4.08 4.25 4.59 4.25 4.70 8.11 4.69 

    (0.000) (0.004) (0.004) (0.000) (0.011) (0.011) (0.000) (0.018) (0.016) (0.000) (1.828) (0.033) 

t.hd.1.scale 150.00 149.47 149.49 149.52 149.21 149.00 149.21 149.17 148.64 149.11 148.36 147.56 148.57 

    (0.000) (0.056) (0.056) (0.000) (0.125) (0.125) (0.000) (0.187) (0.187) (0.000) (0.276) (0.277) 

t.pd.1.shape 5.00 4.96 4.97 4.95 5.07 5.15 5.04 5.20 5.41 5.17 5.43 6.02 5.43 

    (0.000) (0.004) (0.004) (0.000) (0.011) (0.010) (0.000) (0.017) (0.016) (0.000) (0.029) (0.025) 

t.pd.1.scale 350.00 349.95 349.84 349.90 349.57 349.69 349.99 349.53 348.39 349.00 348.79 346.40 347.67 

    (0.000) (0.085) (0.085) (0.000) (0.190) (0.190) (0.000) (0.274) (0.274) (0.000) (0.403) (0.403) 

incr.costs   9444.90 8921.80 8914.76 9421.60 8928.78 8909.90 9419.53 8923.27 8898.46 9448.78 8852.58 unrealistic 

    (0.000) (7.357) (7.350) (0.000) (16.884) (16.832) (0.000) (24.560) (24.415) (0.000) (33.291) unrealistic 

incr.effects   0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 unrealistic 0.18 0.17 unrealistic 

    (0.000) (0.001) (0.001) (0.000) (0.001) (0.001) (0.000) (0.002) unrealistic (0.000) (0.003) unrealistic 

* The real value refers to the value that was used to define the simulated populations (Online Resource 3). ** The true value refers to the “true” value as defined 

in the methods section in the manuscript, i.e. the value representing the scenario in which 2500 clinical studies were performed to estimate the parameter.
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Additional file 1.6: Mean Kullback-Leibler Divergence results (including standard error) for the simulation study 

  n = 500 n = 100 n = 50 n = 25 

  Boot MVN Boot MVN Boot MVN Boot MVN 

p.hp.0 0.46 0.48 0.49 0.50 0.48 0.50 0.50 0.52 

  (0.013) (0.014) (0.014) (0.014) (0.014) (0.014) (0.015) (0.015) 

t.hp.0.shape 0.50 0.49 0.59 0.55 0.70 0.61 0.84 0.67 

  (0.015) (0.014) (0.017) (0.016) (0.021) (0.016) (0.026) (0.017) 

t.hp.0.scale 0.45 0.46 0.48 0.50 0.48 0.50 0.50 0.52 

  (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.013) 

t.hd.0.shape 0.50 0.48 0.60 0.55 0.72 0.62 0.60 0.50 

  (0.015) (0.014) (0.017) (0.015) (0.020) (0.015) (0.020) (0.011) 

t.hd.0.scale 0.48 0.48 0.52 0.52 0.56 0.56 0.68 0.68 

  (0.013) (0.013) (0.013) (0.013) (0.014) (0.014) (0.017) (0.017) 

t.pd.0.shape 0.51 0.48 0.58 0.51 0.66 0.56 0.75 0.61 

  (0.015) (0.013) (0.017) (0.014) (0.018) (0.014) (0.021) (0.014) 

t.pd.0.scale 0.46 0.47 0.49 0.49 0.52 0.51 0.59 0.58 

  (0.013) (0.013) (0.013) (0.013) (0.014) (0.013) (0.015) (0.015) 

p.hp.1 0.48 0.46 0.52 0.50 0.54 0.52 0.52 0.50 

  (0.013) (0.013) (0.015) (0.014) (0.016) (0.015) (0.016) (0.014) 

t.hp.1.shape 0.50 0.49 0.58 0.55 0.66 0.59 0.82 0.65 

  (0.014) (0.014) (0.017) (0.015) (0.020) (0.015) (0.025) (0.016) 

t.hp.1.scale 0.45 0.47 0.46 0.48 0.44 0.46 0.47 0.50 

  (0.012) (0.012) (0.012) (0.012) (0.011) (0.012) (0.012) (0.012) 

t.hd.1.shape 0.49 0.47 0.61 0.51 0.69 0.55 0.84 0.64 

  (0.014) (0.013) (0.018) (0.014) (0.020) (0.014) (0.024) (0.015) 

t.hd.1.scale 0.46 0.46 0.48 0.48 0.56 0.57 0.69 0.70 

  (0.013) (0.012) (0.012) (0.012) (0.014) (0.015) (0.017) (0.017) 

t.pd.1.shape 0.49 0.48 0.56 0.53 0.65 0.57 0.77 0.61 

  (0.015) (0.014) (0.016) (0.014) (0.019) (0.014) (0.023) (0.015) 

t.pd.1.scale 0.48 0.48 0.48 0.48 0.52 0.52 0.57 0.57 

  (0.013) (0.012) (0.012) (0.012) (0.013) (0.013) (0.014) (0.014) 

incr.costs 0.39 0.39 0.14 0.14 0.09 0.09 0.05 0.05 

  (0.006) (0.006) (0.003) (0.003) (0.002) (0.002) (0.001) (0.001) 

incr.effects 0.39 0.39 0.51 0.49 0.53 0.48 0.05 0.05 

  (0.011) (0.011) (0.014) (0.014) (0.015) (0.013) (0.005) (0.004) 

average 0.47 0.46 0.50 0.49 0.55 0.51 0.58 0.52 
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Additional file 1.7: Incremental cost-effectiveness planes for the cohort and all subgroups of the case study 
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Additional file 1.8: Cost-Effectiveness Acceptability Curves for the cohort and all subgroups of the case study 
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