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1 Likelihood

The observed data likelihood is given by
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where 8 = (87, vech(D),0f,...,0%,Xo(t),7,) ,, ) is the collection of unknown parameters that we want to
estimate, with vech(D) denoting the half-vectorisation operator that returns the vector of lower-triangular

elements of matrix D, and
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where r = Zle 7y, is the total dimensionality of the random effects variance-covariance matrix.
2 Score & update equations

From , the expected complete-data log-likelihood is given by
QO16") = Z/ {logf(yz‘,ﬂ,&,bi | 0)}f(b'i | T, i, i, 0™))db;
i=17v 7%

where the expectation is taken over the conditional random effects distribution f(b; | T3, d;, y;, é(m)). Hence,
the updates require expectations about the random effects be calculated of the form [E [h(bi) | T3, 64, yis é(m)} ,
which, in the interests of brevity, we denote here onwards as E [h(b;)] in the update estimators. This expec-

tation is conditional on the observed data (T}, d;,y;) for each subject, the covariates (including measurement



times) (X, Z;, v;), which are implicitly dependent, and the current estimate of the model parameters 6 from
the m-th iteration.

We can decompose the complete-data log-likelihood for subject 4 into

log f(yi, T;, 6, b; | 8) = log f(y: | b, ) + log f(T;,6; | b;,0) + log f(b; | 9),

where
) K
log f(yi|bi,0) = 5 { (Z nik) log(27) + log | 2| + (yi — XiB — Zibi) ' (yi — X3 — Zibi)}<2)
k=1
T;
log f(T;,6;|b;,0) = 8;log Ao(T3) + 6 [v; Yo + Woi(Ti, b;)] — / Xo(w) exp {v; v, + Wai(u, b;) } du,
0
log f(b; |0) = —% {rlog(2n) +log|D| + b D~ 'b;} .

The update equations are then calculated from solving the score equations, 0Q(0 | é(m)) /08, for 6. The
components of the score vector are effectively given by Lin et al. [1]; however, there the random effects were
hierarchically centred about the corresponding fixed effect terms as part of a current values parametrization,
as well as being embedded in a frailty Cox model, which has consequences on the score here. The components

of the score vector and corresponding M-step update equations for each parameter are given as follows.

2.1 A\t

The score with respective to Ag(t) is calculated as

SOo(t) =" {‘”g(;t) — E [exp{v; vo + Wai(t, b))} I(T; > t)} ,
i=1

which leads to the closed-form update:
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which is only evaluated at distinct observed event times, ¢; (j =1,...,J), where I(A) denotes an indicator

function that takes the value 1 if event A occurs, and zero otherwise.

2.2 3

The score with respect to 3 is calculated as

S(B) = Z (X" (v — XiB— ZE[b)]) }



which leads to the closed-form update equation:
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2.3 o}

Rewriting as Zi{:l log{ f(yir | bir, 0)}, the score with respective to o7 is calculated as

S(op) = 202 Z {nzk E [(yix — XirBe — Zicbir) " (yix — XirBe — Zikbik)]}

202 Z { [(yir — XirBr) " (Yir — XixBr — 2ZirE[bir])
+trace (Z;, ZisE[birb;))] }
which leads to the closed-form update equation:

ok = Nik ZE{ Yir — XieBr — Ziwbir) " (Yir — XirBr — Zirbix) }
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= Z {(yir, — XirBr) " (yir — XinBr — 2ZixE[bis]) + trace (Z,;}, ZixE[birb}]) } -
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Using the transformation V = D~!, the score with respect to V is calculated as

S(V) =3 {2V — diag(V ) 2215: [b:b]] —d1ag<ZE [b:b]] )]

which leads to the closed-form update equation for D:

_l n ‘T
_n;]E[blbi].

We also require the score for 6, = vech(D), which can be calculated as
ODY 1 oD
S(0,) = —gtrace <D_ 60’)) + = ; {trace (D_ 50 bD_l]E(binT)>}
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The scores with respect to -, and 7, do not have closed-form solutions. Therefore, they are updated jointly

. . . . . . T
using a one-step Newton-Raphson algorithm iteration. We can write the scores with respect to v = ('y;r , 'yJ )



as

n i
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where 0;(t) = (v;', 2} (£)bi1, . . ., 2/x ()bix ) is a (¢ + K)-vector, and the integration over the survival process

has been replaced with a finite summation over the process evaluated at the unique failure times, since the
non-parametric estimator of baseline hazard is zero except at observed failure times [2]. As A\o(t;) is a function
of v, this is not a closed-form solution. Substituting Ag(t) by Ao (t) from , which is a function of v and the
observed data itself, gives a score that is independent of Ag(¢). Discussion of this in the context of univariate
joint modelling is given by Hsieh et al. [3]. A useful result is that the maximum profile likelihood estimator
is the same as the maximum partial likelihood estimator [4], meaning that plugging-in the estimator Aq(t)
into gives a profile likelihood independent of Ag(t).
The information for ~ is calculated by taking the partial derivative of the score above, and is given by
9 n <

_ 2o - L Nolt)?T(t)
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j\o(t) is given by , which is also a function of v, and a®? = aa' is the outer-product of the vector a.
In practice, calculation of I(vy) is computationally expensive to evaluate. Therefore, in some situations we
may want to approximate it. One approximation we consider is a Gauss-Newton-like approximation [5} p. 8],
which exploits the empirical information matrix approach calculation, but restricted to v only. To further
compensate for this approximation, we also use a nominal step-size of 0.5 rather than 1, which is used when

exactly calculating I(«y). Hence, the one-step block update at the (m + 1)-th EM algorithm iteration is
Smt1) _ 20m) 4 7 (50m) g (50m)
=g ) s o)
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