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1 Likelihood

The observed data likelihood is given by

n∏
i=1

(∫ ∞
−∞

f(yi | bi,θ)f(Ti, δi | bi,θ)f(bi |θ)dbi

)
, (1)

where θ = (β>, vech(D), σ2
1 , . . . , σ

2
K , λ0(t),γ>v ,γ

>
y ) is the collection of unknown parameters that we want to

estimate, with vech(D) denoting the half-vectorisation operator that returns the vector of lower-triangular

elements of matrix D, and

f(yi | bi,θ) =

(
K∏
k=1

(2π)−
nik
2

)
|Σi|−

1
2 exp

{
−1

2
(yi −Xiβ −Zibi)>Σ−1i (yi −Xiβ −Zibi)

}
,

f(Ti, δi | bi;θ) =
[
λ0(Ti) exp

{
v>i γv +W2i(Ti, bi)

}]δi
exp

{
−
∫ Ti

0

λ0(u) exp
{
v>i γv +W2i(u, bi)

}
du

}
,

f(bi |θ) = (2π)−
r
2 |D|− 1

2 exp

{
−1

2
b>i D

−1bi

}
,

where r =
∑K
k=1 rk is the total dimensionality of the random effects variance-covariance matrix.

2 Score & update equations

From (1), the expected complete-data log-likelihood is given by

Q(θ | θ̂(m)) =

n∑
i=1

∫ ∞
−∞

{
log f(yi, Ti, δi, bi |θ)

}
f(bi |Ti, δi,yi, θ̂(m))dbi

where the expectation is taken over the conditional random effects distribution f(bi |Ti, δi,yi, θ̂(m)). Hence,

the updates require expectations about the random effects be calculated of the form E
[
h(bi) |Ti, δi,yi; θ̂(m)

]
,

which, in the interests of brevity, we denote here onwards as E [h(bi)] in the update estimators. This expec-

tation is conditional on the observed data (Ti, δi,yi) for each subject, the covariates (including measurement
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times) (Xi,Zi,vi), which are implicitly dependent, and the current estimate of the model parameters θ from

the m-th iteration.

We can decompose the complete-data log-likelihood for subject i into

log f(yi, Ti, δi, bi |θ) = log f(yi | bi,θ) + log f(Ti, δi | bi,θ) + log f(bi |θ),

where

log f(yi | bi,θ) = −1

2

{(
K∑
k=1

nik

)
log(2π) + log |Σi|+ (yi −Xiβ −Zibi)>Σ−1i (yi −Xiβ −Zibi)

}
,(2)

log f(Ti, δi | bi,θ) = δi log λ0(Ti) + δi
[
v>i γv +W2i(Ti, bi)

]
−
∫ Ti

0

λ0(u) exp
{
v>i γv +W2i(u, bi)

}
du,

log f(bi |θ) = −1

2

{
r log(2π) + log |D|+ b>i D−1bi

}
.

The update equations are then calculated from solving the score equations, ∂Q(θ | θ̂(m))/∂θ, for θ. The

components of the score vector are effectively given by Lin et al. [1]; however, there the random effects were

hierarchically centred about the corresponding fixed effect terms as part of a current values parametrization,

as well as being embedded in a frailty Cox model, which has consequences on the score here. The components

of the score vector and corresponding M-step update equations for each parameter are given as follows.

2.1 λ0(t)

The score with respective to λ0(t) is calculated as

S(λ0(t)) =

n∑
i=1

{
δiI(Ti = t)

λ0(t)
− E

[
exp{v>i γv +W2i(t, bi)}

]
I(Ti ≥ t)

}
,

which leads to the closed-form update:

λ̂0(t) =

∑n
i=1 δiI(Ti = t)∑n

i=1 E
[
exp

{
v>i γv +W2i(t, bi)

}]
I(Ti ≥ t)

, (3)

which is only evaluated at distinct observed event times, tj (j = 1, . . . , J), where I(A) denotes an indicator

function that takes the value 1 if event A occurs, and zero otherwise.

2.2 β

The score with respect to β is calculated as

S(β) =

n∑
i=1

{
X>i Σ

−1
i (yi −Xiβ −ZiE[bi])

}
,

2



which leads to the closed-form update equation:

β̂ =

(
n∑
i=1

X>i Σ
−1
i Xi

)−1( n∑
i=1

X>i Σ
−1
i (yi −ZiE[bi])

)
,

=

(
n∑
i=1

X>i Xi

)−1( n∑
i=1

X>i (yi −ZiE[bi])

)
.

2.3 σ2
k

Rewriting (2) as
∑K
k=1 log{f(yik | bik,θ)}, the score with respective to σ2

k is calculated as

S(σ2
k) = − 1

2σ2
k

n∑
i=1

{
nik −

1

σ2
k

E
[
(yik −Xikβk −Zikbik)>(yik −Xikβk −Zikbik)

]}

= − 1

2σ2
k

n∑
i=1

{
nik −

1

σ2
k

[
(yik −Xikβk)>(yik −Xikβk − 2ZikE[bik])

+trace
(
Z>ikZikE[bikb

>
ik]
)]}

,

which leads to the closed-form update equation:

σ̂2
k =

1∑n
i=1 nik

n∑
i=1

E
{

(yik −Xikβk −Zikbik)>(yik −Xikβk −Zikbik)
}

=
1∑n

i=1 nik

n∑
i=1

{
(yik −Xikβk)>(yik −Xikβk − 2ZikE[bik]) + trace

(
Z>ikZikE[bikb

>
ik]
)}
.

2.4 D

Using the transformation V = D−1, the score with respect to V is calculated as

S(V ) =
n

2

{
2V −1 − diag(V −1)

}
− 1

2

[
2

n∑
i=1

E
[
bib
>
i

]
− diag

(
n∑
i=1

E
[
bib
>
i

])]
,

which leads to the closed-form update equation for D:

D̂ =
1

n

n∑
i=1

E
[
bib
>
i

]
.

We also require the score for θb ≡ vech(D), which can be calculated as

S(θb) = −n
2

trace

(
D−1

∂D

∂θb

)
+

1

2

n∑
i=1

{
trace

(
D−1

∂D

∂θb
D−1E(bib

>
i )

)}

2.5 γ

The scores with respect to γv and γy do not have closed-form solutions. Therefore, they are updated jointly

using a one-step Newton-Raphson algorithm iteration. We can write the scores with respect to γ =
(
γ>v ,γ

>
y

)>
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as

S(γ) =

n∑
i=1

[
δiE [ṽi(Ti)]−

∫ Ti

0

λ0(u)E
[
ṽi(u) exp{ṽ>i (u)γ}

]
du

]

=

n∑
i=1

δiE [ṽi(Ti)]−
J∑
j=1

λ0(tj)E
[
ṽi(tj) exp{ṽi(tj)>γ}

]
I(Ti ≥ tj)

 ,
where ṽi(t) =

(
v>i , z

>
i1(t)bi1, . . . ,z

>
iK(t)biK

)
is a (q+K)-vector, and the integration over the survival process

has been replaced with a finite summation over the process evaluated at the unique failure times, since the

non-parametric estimator of baseline hazard is zero except at observed failure times [2]. As λ0(tj) is a function

of γ, this is not a closed-form solution. Substituting λ0(t) by λ̂0(t) from (3), which is a function of γ and the

observed data itself, gives a score that is independent of λ0(t). Discussion of this in the context of univariate

joint modelling is given by Hsieh et al. [3]. A useful result is that the maximum profile likelihood estimator

is the same as the maximum partial likelihood estimator [4], meaning that plugging-in the estimator λ̂0(t)

into (1) gives a profile likelihood independent of λ0(t).

The information for γ is calculated by taking the partial derivative of the score above, and is given by

I(γ) ≡ − ∂

∂γ
S(γ) =

n∑
i=1

J∑
j=1

{
λ̂0(tj)I(Ti ≥ tj)E

[
ṽ⊗2i (tj) exp{ṽ>i (tj)γ}

]}
−

J∑
j=1

λ̂0(tj)
2Γ(tj)∑n

i=1 δiI(Ti = tj)
.

where

Γ(tj) =

{
n∑
i=1

E
[
ṽi(tj) exp{ṽ>i (tj)γ}

]
I(Ti ≥ tj)

}⊗2
,

λ̂0(t) is given by (3), which is also a function of γ, and a⊗2 = aa> is the outer-product of the vector a.

In practice, calculation of I(γ) is computationally expensive to evaluate. Therefore, in some situations we

may want to approximate it. One approximation we consider is a Gauss-Newton-like approximation [5, p. 8],

which exploits the empirical information matrix approach calculation, but restricted to γ only. To further

compensate for this approximation, we also use a nominal step-size of 0.5 rather than 1, which is used when

exactly calculating I(γ). Hence, the one-step block update at the (m+ 1)-th EM algorithm iteration is

γ̂(m+1) = γ̂(m) + I
(
γ̂(m)

)−1
S
(
γ̂(m)

)
.
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