Appendix for "joineRML: A joint model and software package for time-to-event and multivariate longitudinal outcomes"

G. L. Hickey ${ }^{1}$ \& P. Philipson ${ }^{2}$, A. L. Jorgensen ${ }^{1}$, R. Kolamunnage-Dona ${ }^{1}$
${ }^{1}$ Department of Biostatistics, Institute of Translational Medicine, University of Liverpool
${ }^{2}$ Department of Mathematics, Physics and Electrical Engineering, Northumbria University

July 31, 2017

1 Likelihood

The observed data likelihood is given by

$$
\begin{equation*}
\prod_{i=1}^{n}\left(\int_{-\infty}^{\infty} f\left(\boldsymbol{y}_{i} \mid \boldsymbol{b}_{i}, \boldsymbol{\theta}\right) f\left(T_{i}, \delta_{i} \mid \boldsymbol{b}_{i}, \boldsymbol{\theta}\right) f\left(\boldsymbol{b}_{i} \mid \boldsymbol{\theta}\right) d \boldsymbol{b}_{i}\right) \tag{1}
\end{equation*}
$$

where $\boldsymbol{\theta}=\left(\boldsymbol{\beta}^{\top}, \operatorname{vech}(\boldsymbol{D}), \sigma_{1}^{2}, \ldots, \sigma_{K}^{2}, \lambda_{0}(t), \boldsymbol{\gamma}_{v}^{\top}, \boldsymbol{\gamma}_{y}^{\top}\right)$ is the collection of unknown parameters that we want to estimate, with $\operatorname{vech}(\boldsymbol{D})$ denoting the half-vectorisation operator that returns the vector of lower-triangular elements of matrix \boldsymbol{D}, and

$$
\begin{aligned}
f\left(\boldsymbol{y}_{i} \mid \boldsymbol{b}_{i}, \boldsymbol{\theta}\right) & =\left(\prod_{k=1}^{K}(2 \pi)^{-\frac{n_{i k}}{2}}\right)\left|\boldsymbol{\Sigma}_{i}\right|^{-\frac{1}{2}} \exp \left\{-\frac{1}{2}\left(\boldsymbol{y}_{i}-\boldsymbol{X}_{i} \boldsymbol{\beta}-\boldsymbol{Z}_{i} \boldsymbol{b}_{i}\right)^{\top} \boldsymbol{\Sigma}_{i}^{-1}\left(\boldsymbol{y}_{i}-\boldsymbol{X}_{i} \boldsymbol{\beta}-\boldsymbol{Z}_{i} \boldsymbol{b}_{i}\right)\right\}, \\
f\left(T_{i}, \delta_{i} \mid \boldsymbol{b}_{i} ; \boldsymbol{\theta}\right) & =\left[\lambda_{0}\left(T_{i}\right) \exp \left\{\boldsymbol{v}_{i}^{\top} \gamma_{v}+W_{2 i}\left(T_{i}, \boldsymbol{b}_{i}\right)\right\}\right]^{\delta_{i}} \exp \left\{-\int_{0}^{T_{i}} \lambda_{0}(u) \exp \left\{\boldsymbol{v}_{i}^{\top} \boldsymbol{\gamma}_{v}+W_{2 i}\left(u, \boldsymbol{b}_{i}\right)\right\} d u\right\}, \\
f\left(\boldsymbol{b}_{i} \mid \boldsymbol{\theta}\right) & =(2 \pi)^{-\frac{r}{2}}|\boldsymbol{D}|^{-\frac{1}{2}} \exp \left\{-\frac{1}{2} \boldsymbol{b}_{i}^{\top} \boldsymbol{D}^{-1} \boldsymbol{b}_{i}\right\},
\end{aligned}
$$

where $r=\sum_{k=1}^{K} r_{k}$ is the total dimensionality of the random effects variance-covariance matrix.

2 Score \& update equations

From (11), the expected complete-data log-likelihood is given by

$$
Q\left(\boldsymbol{\theta} \mid \hat{\boldsymbol{\theta}}^{(m)}\right)=\sum_{i=1}^{n} \int_{-\infty}^{\infty}\left\{\log f\left(\boldsymbol{y}_{i}, T_{i}, \delta_{i}, \boldsymbol{b}_{i} \mid \boldsymbol{\theta}\right)\right\} f\left(\boldsymbol{b}_{i} \mid T_{i}, \delta_{i}, \boldsymbol{y}_{i}, \hat{\boldsymbol{\theta}}^{(m)}\right) d \boldsymbol{b}_{i}
$$

where the expectation is taken over the conditional random effects distribution $f\left(\boldsymbol{b}_{i} \mid T_{i}, \delta_{i}, \boldsymbol{y}_{i}, \hat{\boldsymbol{\theta}}^{(m)}\right)$. Hence, the updates require expectations about the random effects be calculated of the form $\mathbb{E}\left[h\left(\boldsymbol{b}_{i}\right) \mid T_{i}, \delta_{i}, \boldsymbol{y}_{i} ; \hat{\boldsymbol{\theta}}^{(m)}\right]$, which, in the interests of brevity, we denote here onwards as $\mathbb{E}\left[h\left(\boldsymbol{b}_{i}\right)\right]$ in the update estimators. This expectation is conditional on the observed data $\left(T_{i}, \delta_{i}, \boldsymbol{y}_{i}\right)$ for each subject, the covariates (including measurement
times) $\left(\boldsymbol{X}_{i}, \boldsymbol{Z}_{i}, \boldsymbol{v}_{i}\right)$, which are implicitly dependent, and the current estimate of the model parameters $\boldsymbol{\theta}$ from the m-th iteration.

We can decompose the complete-data log-likelihood for subject i into

$$
\log f\left(\boldsymbol{y}_{i}, T_{i}, \delta_{i}, \boldsymbol{b}_{i} \mid \boldsymbol{\theta}\right)=\log f\left(\boldsymbol{y}_{i} \mid \boldsymbol{b}_{i}, \boldsymbol{\theta}\right)+\log f\left(T_{i}, \delta_{i} \mid \boldsymbol{b}_{i}, \boldsymbol{\theta}\right)+\log f\left(\boldsymbol{b}_{i} \mid \boldsymbol{\theta}\right)
$$

where

$$
\begin{aligned}
\log f\left(\boldsymbol{y}_{i} \mid \boldsymbol{b}_{i}, \boldsymbol{\theta}\right) & =-\frac{1}{2}\left\{\left(\sum_{k=1}^{K} n_{i k}\right) \log (2 \pi)+\log \left|\boldsymbol{\Sigma}_{i}\right|+\left(\boldsymbol{y}_{i}-\boldsymbol{X}_{i} \boldsymbol{\beta}-\boldsymbol{Z}_{i} \boldsymbol{b}_{i}\right)^{\top} \boldsymbol{\Sigma}_{i}^{-1}\left(\boldsymbol{y}_{i}-\boldsymbol{X}_{i} \boldsymbol{\beta}-\boldsymbol{Z}_{i} \boldsymbol{b}_{i}\right)\right\}(2) \\
\log f\left(T_{i}, \delta_{i} \mid \boldsymbol{b}_{i}, \boldsymbol{\theta}\right) & =\delta_{i} \log \lambda_{0}\left(T_{i}\right)+\delta_{i}\left[\boldsymbol{v}_{i}^{\top} \boldsymbol{\gamma}_{v}+W_{2 i}\left(T_{i}, \boldsymbol{b}_{i}\right)\right]-\int_{0}^{T_{i}} \lambda_{0}(u) \exp \left\{\boldsymbol{v}_{i}^{\top} \boldsymbol{\gamma}_{v}+W_{2 i}\left(u, \boldsymbol{b}_{i}\right)\right\} d u, \\
\log f\left(\boldsymbol{b}_{i} \mid \boldsymbol{\theta}\right) & =-\frac{1}{2}\left\{r \log (2 \pi)+\log |\boldsymbol{D}|+\boldsymbol{b}_{i}^{\top} \boldsymbol{D}^{-1} \boldsymbol{b}_{i}\right\} .
\end{aligned}
$$

The update equations are then calculated from solving the score equations, $\partial Q\left(\boldsymbol{\theta} \mid \hat{\boldsymbol{\theta}}{ }^{(m)}\right) / \partial \boldsymbol{\theta}$, for $\boldsymbol{\theta}$. The components of the score vector are effectively given by Lin et al. 1] however, there the random effects were hierarchically centred about the corresponding fixed effect terms as part of a current values parametrization, as well as being embedded in a frailty Cox model, which has consequences on the score here. The components of the score vector and corresponding M-step update equations for each parameter are given as follows.

$2.1 \quad \lambda_{0}(t)$

The score with respective to $\lambda_{0}(t)$ is calculated as

$$
S\left(\lambda_{0}(t)\right)=\sum_{i=1}^{n}\left\{\frac{\delta_{i} I\left(T_{i}=t\right)}{\lambda_{0}(t)}-\mathbb{E}\left[\exp \left\{\boldsymbol{v}_{i}^{\top} \boldsymbol{\gamma}_{v}+W_{2 i}\left(t, \boldsymbol{b}_{i}\right)\right\}\right] I\left(T_{i} \geq t\right)\right\}
$$

which leads to the closed-form update:

$$
\begin{equation*}
\hat{\lambda}_{0}(t)=\frac{\sum_{i=1}^{n} \delta_{i} I\left(T_{i}=t\right)}{\sum_{i=1}^{n} \mathbb{E}\left[\exp \left\{\boldsymbol{v}_{i}^{\top} \gamma_{v}+W_{2 i}\left(t, \boldsymbol{b}_{i}\right)\right\}\right] I\left(T_{i} \geq t\right)}, \tag{3}
\end{equation*}
$$

which is only evaluated at distinct observed event times, $t_{j}(j=1, \ldots, J)$, where $I(\mathcal{A})$ denotes an indicator function that takes the value 1 if event \mathcal{A} occurs, and zero otherwise.

2.2β

The score with respect to $\boldsymbol{\beta}$ is calculated as

$$
S(\boldsymbol{\beta})=\sum_{i=1}^{n}\left\{\boldsymbol{X}_{i}^{\top} \boldsymbol{\Sigma}_{i}^{-1}\left(\boldsymbol{y}_{i}-\boldsymbol{X}_{i} \boldsymbol{\beta}-\boldsymbol{Z}_{i} \mathbb{E}\left[\boldsymbol{b}_{i}\right]\right)\right\}
$$

which leads to the closed-form update equation:

$$
\begin{aligned}
\hat{\boldsymbol{\beta}} & =\left(\sum_{i=1}^{n} \boldsymbol{X}_{i}^{\top} \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{X}_{i}\right)^{-1}\left(\sum_{i=1}^{n} \boldsymbol{X}_{i}^{\top} \boldsymbol{\Sigma}_{i}^{-1}\left(\boldsymbol{y}_{i}-\boldsymbol{Z}_{i} \mathbb{E}\left[\boldsymbol{b}_{i}\right]\right)\right) \\
& =\left(\sum_{i=1}^{n} \boldsymbol{X}_{i}^{\top} \boldsymbol{X}_{i}\right)^{-1}\left(\sum_{i=1}^{n} \boldsymbol{X}_{i}^{\top}\left(\boldsymbol{y}_{i}-\boldsymbol{Z}_{i} \mathbb{E}\left[\boldsymbol{b}_{i}\right]\right)\right)
\end{aligned}
$$

$2.3 \sigma_{k}^{2}$

Rewriting (2) as $\sum_{k=1}^{K} \log \left\{f\left(\boldsymbol{y}_{i k} \mid \boldsymbol{b}_{i k}, \boldsymbol{\theta}\right)\right\}$, the score with respective to σ_{k}^{2} is calculated as

$$
\begin{aligned}
& S\left(\sigma_{k}^{2}\right)=-\frac{1}{2 \sigma_{k}^{2}} \sum_{i=1}^{n}\left\{n_{i k}-\frac{1}{\sigma_{k}^{2}} \mathbb{E}\left[\left(\boldsymbol{y}_{i k}-\boldsymbol{X}_{i k} \boldsymbol{\beta}_{k}-\boldsymbol{Z}_{i k} \boldsymbol{b}_{i k}\right)^{\top}\left(\boldsymbol{y}_{i k}-\boldsymbol{X}_{i k} \boldsymbol{\beta}_{k}-\boldsymbol{Z}_{i k} \boldsymbol{b}_{i k}\right)\right]\right\} \\
&=- \frac{1}{2 \sigma_{k}^{2}} \sum_{i=1}^{n}\left\{n_{i k}-\frac{1}{\sigma_{k}^{2}}\left[\left(\boldsymbol{y}_{i k}-\boldsymbol{X}_{i k} \boldsymbol{\beta}_{k}\right)^{\top}\left(\boldsymbol{y}_{i k}-\boldsymbol{X}_{i k} \boldsymbol{\beta}_{k}-2 \boldsymbol{Z}_{i k} \mathbb{E}\left[\boldsymbol{b}_{i k}\right]\right)\right.\right. \\
&\left.\left.+\operatorname{trace}\left(\boldsymbol{Z}_{i k}^{\top} \boldsymbol{Z}_{i k} \mathbb{E}\left[\boldsymbol{b}_{i k} \boldsymbol{b}_{i k}^{\top}\right]\right)\right]\right\}
\end{aligned}
$$

which leads to the closed-form update equation:

$$
\begin{aligned}
\hat{\sigma}_{k}^{2} & =\frac{1}{\sum_{i=1}^{n} n_{i k}} \sum_{i=1}^{n} \mathbb{E}\left\{\left(\boldsymbol{y}_{i k}-\boldsymbol{X}_{i k} \boldsymbol{\beta}_{k}-\boldsymbol{Z}_{i k} \boldsymbol{b}_{i k}\right)^{\top}\left(\boldsymbol{y}_{i k}-\boldsymbol{X}_{i k} \boldsymbol{\beta}_{k}-\boldsymbol{Z}_{i k} \boldsymbol{b}_{i k}\right)\right\} \\
& =\frac{1}{\sum_{i=1}^{n} n_{i k}} \sum_{i=1}^{n}\left\{\left(\boldsymbol{y}_{i k}-\boldsymbol{X}_{i k} \boldsymbol{\beta}_{k}\right)^{\top}\left(\boldsymbol{y}_{i k}-\boldsymbol{X}_{i k} \boldsymbol{\beta}_{k}-2 \boldsymbol{Z}_{i k} \mathbb{E}\left[\boldsymbol{b}_{i k}\right]\right)+\operatorname{trace}\left(\boldsymbol{Z}_{i k}^{\top} \boldsymbol{Z}_{i k} \mathbb{E}\left[\boldsymbol{b}_{i k} \boldsymbol{b}_{i k}^{\top}\right]\right)\right\} .
\end{aligned}
$$

$2.4 \quad D$

Using the transformation $\boldsymbol{V}=\boldsymbol{D}^{-1}$, the score with respect to V is calculated as

$$
S(\boldsymbol{V})=\frac{n}{2}\left\{2 \boldsymbol{V}^{-1}-\operatorname{diag}\left(\boldsymbol{V}^{-1}\right)\right\}-\frac{1}{2}\left[2 \sum_{i=1}^{n} \mathbb{E}\left[\boldsymbol{b}_{i} \boldsymbol{b}_{i}^{\top}\right]-\operatorname{diag}\left(\sum_{i=1}^{n} \mathbb{E}\left[\boldsymbol{b}_{i} \boldsymbol{b}_{i}^{\top}\right]\right)\right]
$$

which leads to the closed-form update equation for \boldsymbol{D} :

$$
\hat{\boldsymbol{D}}=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\boldsymbol{b}_{i} \boldsymbol{b}_{i}^{\top}\right]
$$

We also require the score for $\boldsymbol{\theta}_{b} \equiv \operatorname{vech}(\boldsymbol{D})$, which can be calculated as

$$
S\left(\boldsymbol{\theta}_{b}\right)=-\frac{n}{2} \operatorname{trace}\left(\boldsymbol{D}^{-1} \frac{\partial \boldsymbol{D}}{\partial \boldsymbol{\theta}_{b}}\right)+\frac{1}{2} \sum_{i=1}^{n}\left\{\operatorname{trace}\left(\boldsymbol{D}^{-1} \frac{\partial \boldsymbol{D}}{\partial \boldsymbol{\theta}_{b}} \boldsymbol{D}^{-1} \mathbb{E}\left(\boldsymbol{b}_{i} \boldsymbol{b}_{i}^{\top}\right)\right)\right\}
$$

2.5γ

The scores with respect to γ_{v} and γ_{y} do not have closed-form solutions. Therefore, they are updated jointly using a one-step Newton-Raphson algorithm iteration. We can write the scores with respect to $\boldsymbol{\gamma}=\left(\boldsymbol{\gamma}_{v}^{\top}, \boldsymbol{\gamma}_{y}^{\top}\right)^{\top}$

$$
\begin{aligned}
S(\boldsymbol{\gamma}) & =\sum_{i=1}^{n}\left[\delta_{i} \mathbb{E}\left[\tilde{\boldsymbol{v}}_{i}\left(T_{i}\right)\right]-\int_{0}^{T_{i}} \lambda_{0}(u) \mathbb{E}\left[\tilde{\boldsymbol{v}}_{i}(u) \exp \left\{\tilde{\boldsymbol{v}}_{i}^{\top}(u) \boldsymbol{\gamma}\right\}\right] d u\right] \\
& =\sum_{i=1}^{n}\left[\delta_{i} \mathbb{E}\left[\tilde{\boldsymbol{v}}_{i}\left(T_{i}\right)\right]-\sum_{j=1}^{J} \lambda_{0}\left(t_{j}\right) \mathbb{E}\left[\tilde{\boldsymbol{v}}_{i}\left(t_{j}\right) \exp \left\{\tilde{\boldsymbol{v}}_{i}\left(t_{j}\right)^{\top} \boldsymbol{\gamma}\right\}\right] I\left(T_{i} \geq t_{j}\right)\right],
\end{aligned}
$$

where $\tilde{\boldsymbol{v}}_{i}(t)=\left(\boldsymbol{v}_{i}^{\top}, \boldsymbol{z}_{i 1}^{\top}(t) \boldsymbol{b}_{i 1}, \ldots, \boldsymbol{z}_{i K}^{\top}(t) \boldsymbol{b}_{i K}\right)$ is a $(q+K)$-vector, and the integration over the survival process has been replaced with a finite summation over the process evaluated at the unique failure times, since the non-parametric estimator of baseline hazard is zero except at observed failure times 2 . As $\lambda_{0}\left(t_{j}\right)$ is a function of γ, this is not a closed-form solution. Substituting $\lambda_{0}(t)$ by $\hat{\lambda}_{0}(t)$ from (3), which is a function of γ and the observed data itself, gives a score that is independent of $\lambda_{0}(t)$. Discussion of this in the context of univariate joint modelling is given by Hsieh et al. [3]. A useful result is that the maximum profile likelihood estimator is the same as the maximum partial likelihood estimator 4, meaning that plugging-in the estimator $\hat{\lambda}_{0}(t)$ into (1) gives a profile likelihood independent of $\lambda_{0}(t)$.

The information for γ is calculated by taking the partial derivative of the score above, and is given by

$$
I(\boldsymbol{\gamma}) \equiv-\frac{\partial}{\partial \boldsymbol{\gamma}} S(\boldsymbol{\gamma})=\sum_{i=1}^{n} \sum_{j=1}^{J}\left\{\hat{\lambda}_{0}\left(t_{j}\right) I\left(T_{i} \geq t_{j}\right) \mathbb{E}\left[\tilde{\boldsymbol{v}}_{i}^{\otimes 2}\left(t_{j}\right) \exp \left\{\tilde{\boldsymbol{v}}_{i}^{\top}\left(t_{j}\right) \gamma\right\}\right]\right\}-\sum_{j=1}^{J} \frac{\hat{\lambda}_{0}\left(t_{j}\right)^{2} \boldsymbol{\Gamma}\left(t_{j}\right)}{\sum_{i=1}^{n} \delta_{i} I\left(T_{i}=t_{j}\right)}
$$

where

$$
\boldsymbol{\Gamma}\left(t_{j}\right)=\left\{\sum_{i=1}^{n} \mathbb{E}\left[\tilde{\boldsymbol{v}}_{i}\left(t_{j}\right) \exp \left\{\tilde{\boldsymbol{v}}_{i}^{\top}\left(t_{j}\right) \gamma\right\}\right] I\left(T_{i} \geq t_{j}\right)\right\}^{\otimes 2}
$$

$\hat{\lambda}_{0}(t)$ is given by (3), which is also a function of γ, and $\boldsymbol{a}^{\otimes 2}=\boldsymbol{a} \boldsymbol{a}^{\top}$ is the outer-product of the vector \boldsymbol{a}. In practice, calculation of $I(\gamma)$ is computationally expensive to evaluate. Therefore, in some situations we may want to approximate it. One approximation we consider is a Gauss-Newton-like approximation [5] p. 8], which exploits the empirical information matrix approach calculation, but restricted to γ only. To further compensate for this approximation, we also use a nominal step-size of 0.5 rather than 1 , which is used when exactly calculating $I(\gamma)$. Hence, the one-step block update at the $(m+1)$-th EM algorithm iteration is

$$
\hat{\boldsymbol{\gamma}}^{(m+1)}=\hat{\gamma}^{(m)}+I\left(\hat{\gamma}^{(m)}\right)^{-1} S\left(\hat{\gamma}^{(m)}\right) .
$$

References

[1] H Lin, C. E. McCulloch, and S. T. Mayne. "Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables". In: Statistics in Medicine 21 (2002), pp. 2369-2382.
[2] R Henderson, P. J. Diggle, and A Dobson. "Joint modelling of longitudinal measurements and event time data". In: Biostatistics 1.4 (2000), pp. 465-480.
[3] F Hsieh, Y. K. Tseng, and J. L. Wang. "Joint modeling of survival and longitudinal data: Likelihood approach revisited". In: Biometrics 62.4 (2006), pp. 1037-1043.
[4] H Lin. "A finite mixture model for joint longitudinal biomarker and survival outcome responses". Ph.D. Cornell University, 2000.
[5] G. J. McLachlan and T Krishnan. The EM Algorithm and Extensions. Second. Wiley-Interscience, 2008.

