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A Calibration model and prior details

A.1 Model definitions

Pre-treatment viral load (VL) is analysed on the log10 scale, and we make use of the
non-linear model for the mean in terms of time from seroconversion as reported by
Pantazis et al.1:

gV L (tV L) =β0V L +β1V L tV L +β2V L exp
(−β3V L tV L

)
, (1)

where tV L is the time of VL observation from date of seroconversion and β0V L–β3V L

are parameters. We considered the addition of further parameters related to the fol-
lowing patient characteristics and their interaction with time (i.e. effectively adjusting
β0V L and β1V L): sex, mode of infection, ethnicity, age at infection (quadratic function
centred at 32 years) and viral subtype.

The patient-specific random intercept and slope of VL are modelled as following
a joint multivariate normal distribution with the random-intercept and -slope terms
of the pre-treatment CD4 part of the model, and there is also an examination-specific
independent normal error term for VL:

vi |τi = gV L (tV L:i )+1bV L0:i + tV L:i bV L1:i +eV L:i

yi |τi = Xiβ+Zi bi +Wi +ei(
bV L:i

bi

)
∼ MV N

(
0,

(
ΨV L ΨV L:C D4

ΨC D4:V L Ψ

))
eV L:i ∼ MV N (0, σ2

V LInV L:i )

Wi |γi ,τi ∼ MV N (0,
1

γi
Σi )

ei ∼ MV N (0, σ2Ini )

γi ∼ Gamma
(v

2
,

v

2

)
τi ∼ Uniform(0,ci ).

Here, for the viral load part of the model, vi is the vector of nV L:i pre-treatment VL
observations for the ith patient at times tV L:i , gV L is a vectorised version of the function
in (1), 1 is a vector of ‘1’s of length nV L:i , bV L0:i and bV L1:i are the subject-specific
random intercept and slope terms for VL with covariance matrix ΨV L and eV L:i is a
vector of examination-specific residuals for VL with variance σ2

V L .
CD4 counts are measured on the square-root scale, with yi representing the vector

of ni pre-treatment observations for the ith individual at times ti . Xi represents the de-
sign matrix for the ‘fixed effects’ parametersβ, Zi represents the subset of the columns
of the design matrix associated with the ‘random effects’ for each individual bi and ei

is the vector of residual errors for each pre-treatment measurement occasion. All mod-
els considered include ‘random intercept and slopes’ components for the CD4 model,
i.e. with a vector of ‘1’s and ti included in both Xi and Zi . Models were also considered
in which Xi included additional columns corresponding to the following patient and
viral characteristics and their interaction with time since seroconversion: sex, mode of
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infection, ethnicity, age at infection (quadratic function centred at 32 years) and viral
subtype (with additional associated parameters in β).

Wi denotes the vector of values for a fractional Brownian motion stochastic pro-
cess at times ti , with 1

γi
Σi defined as the covariance matrix for the process of the

ith individual, dependent on the parameters κ and H and with variance conditional
on a gamma-distributed variable γi ; allowing between-patient differences in variabil-
ity over time, determined by the ‘degrees of freedom’ parameter v , as previously de-
scribed2;3.

The random effects terms for the VL and CD4 parts of the models are correlated,
with covariance between them defined by theΨV L:C D4 sub-matrix. The ‘observation’
time vectors for both viral load and CD4 counts, tV L:i and ti , are defined as ‘time from
true date of seroconversion’ and are conditioned on the delay from seroconversion to
diagnosis in each patient ‘τi ’. In patients in the ‘seroconverter’ cohort in whom the
exact date of infection is not known, τi is assumed to follow a uniform distribution
with lower limit zero and upper limit equal to the time interval ‘ci ’ between the dates
of last negative and first positive HIV test in the ith patient.

A further complication is that the VL measurements are truncated at lower and
upper limits of detection, with these limits depending on the equipment used at each
examination and ranging from 1–500 copies/mL for the lower limit and 50000–108

copies/mL for the upper limit. Following Thiébaut et al.4;5, we account for this is-
sue by making use of the fact that the likelihood contribution for such an observation
below a lower limit of detection, conditional on the subject-specific random effects, is
independent of other observations and can be expressed using the cumulative normal
distribution function (Φ)6 and the lower limit of detection in that case (l i mL

i j ):

L(vi j |bV L:i ,τi ) =Φ
((

l i mL
i j −

(
gV L

(
tV L:i j

)+bV L0:i + tV L:i j bV L1:i
))

/σV L

)
,

while the likelihood contribution for observations above the upper limit of detection
can be expressed using the upper limit (l i mU

i j ) in that case:

L(vi j |bV L:i ,τi ) = 1−Φ
((

l i mU
i j −

(
gV L

(
tV L:i j

)+bV L0:i + tV L:i j bV L1:i
))

/σV L

)
.

Here, the subscripts denote the jth VL measurement in the ith individual.
Given the values of bV L:i , γi and τi , the likelihood function for the CD4 part of the

model can be expressed in closed form; this follows the strategy detailed in the Ap-
pendix of Stirrup et al. (under review) using standard expressions for a conditional
multivariate normal distribution. Hence, the latent variables corresponding to the
random effects (bi ) and realisations of the stochastic process (Wi ) for CD4 are not
declared as parameters in the Stan model template, with the marginal log-likelihood
(conditional on other latent variables) added to the log-probability for the model.

The probability density function for the zero-inflated beta distribution for the pro-
portion of ambiguous nucleotide calls at first treatment-naïve viral sequencing (ai )
can be written as follows:

f A
(
ai |α′,β′,θ′

)={
θ′ if ai = 0

(1−θ′) 1
B(α′,β′) aα

′−1
i (1−ai )β

′−1 if 0 < ai < 1,
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where, B (·, ·) is the beta function. The Bernoulli distribution parameter is restricted
to the range 0 < θ′ < 1, and so is modelled using a logistic link function, whilst the
beta distribution parameters are restricted to 0 < α′ and 0 < β′ and so are both mod-
elled using a log link function. The linear predictor in each case includes an intercept
term and a parameter associated with the time elapsed from seroconversion to blood
sampling (conditional on the delay-to-diagnosis variable in that patient), and param-
eters were also considered for the set of patient characteristics included in the viral
load and CD4 models. Different laboratories can show consistent differences in the
proportion of ambiguous nucleotide calls returned in viral sequences, and in order to
adjust for this we also consider lab-specific random effects for α′, β′ and θ′, modelled
as following a multivariate normal distribution. We note that this additional level of
nested latent variables would make accurate maximum likelihood estimation of the
defined model very difficult, but this does not have a substantial effect on computa-
tional requirements for Bayesian model fitting.

A.2 Prior distributions for parameters

As the analysis is carried out in a fully Bayesian framework, we are required to specify
prior distributions for each of the model parameters. As we feel that the calibration
dataset contains enough information to inform parameter values with minimal ad-
ditional input, we opt to follow a strategy of using weakly informative prior distribu-
tions7. The rationale for this choice is to add to computational stability whilst allowing
the data under investigation to dominate the posterior distribution for each parameter
obtained through model fitting.

Briefly, standard deviation parameters of CD4 and VL patient-specific random ef-
fects were given an exponential prior with rate 0.1, as were the standard deviation pa-
rameters for lab-specific random effects. The correlation matrices for both the CD4-
VL and the lab-specific random effects were given an LKJ(2) prior7;8. The log-scale
parameter for the fractional Brownian motion process and log-variance parameter for
measurement error of CD4 counts were given a normal(0,5) prior, as was the logit-H
parameter for fractional Brownian motion. The log-standard deviation parameter for
VL measurement error was also given a normal(0,5) prior. The mean intercept and
slope parameters for CD4 counts, the log of the degrees of freedom parameter (v) for
the fractional Brownian motion process and the population average parameters for
log10(VL) were given normal distributions with mean value taken from Stirrup et al.
(under review) and variance 5. All parameters related to the model for nucleotide am-
biguity proportion were given a normal(0,5) prior, as were all ‘effect’ parameters linked
to patient characteristics for the CD4 count, VL or sequence ambiguity aspects of the
model.

A.3 Computational notes

The combined bivariate model is similar to that used for pre-treatment data in a fur-
ther analysis by Stirrup et al.9, but this former work only included a single random
effects term for the VL model and did not allow for between-patient differences in
variability over time for the CD4 model; these restrictions were necessary because of
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the computational pressures that follow from the application of maximum likelihood
estimation to a complex model without a closed-form log-likelihood function. In the
current analysis we employ a fully Bayesian approach, implemented in the Stan prob-
abilistic programming language10, which places fewer limitations on model complex-
ity. In defining a model in Stan, the user is required to write out a template for the
marginal log-probability given the data in terms of a set of parameters. We follow the
strategy of Stirrup et al. (under review) in expressing the marginal log-probability for
the model with integration over the CD4-related latent variables conditional on the
values of the VL-related random variables in order to improve computational perfor-
mance.

A.4 Computational approach for generating predictions in new pa-
tients

One general approach for generating predictions would be to re-run Bayesian model
fitting in the calibration dataset in combination with any new patient or group of pa-
tients; with analysis then performed using the posterior distribution of the delay to
diagnosis in the patient(s) of interest. However, carrying out this procedure for indi-
vidual patients, or small groups of patients, would be computationally inefficient (ef-
fectively requiring that the model be refitted to the calibration dataset for every run),
whilst such an analysis may not be computationally feasible for a large group of pa-
tients. The approach of using a multivariate normal approximation to parameters in
the biomarker model as fitted to the calibration dataset avoids refitting of the model in
the calibration dataset on each occasion, and also has the advantage that inferences
regarding the delay to diagnosis in a new patient could be obtained without access to
the original calibration dataset.

We have carried out all analyses using the Stan software because it allows the de-
velopment of complex models for which it would be very difficult to code an efficient
and robust model-specific sampling program. The Stan software requires prior dis-
tributions to be specified for the parameters of any new model, and it is not possible
to feed in a pre-existing sample vector. In a fully Bayesian framework, information
regarding parameters can be updated by any newly available data; there is the poten-
tial for the analysis dataset to provide further useful information regarding model pa-
rameters even after the calibration stage, but this would not be possible using a fixed
sample vector of model parameters. We also note that the use of the Stan software
means that the model files created to run our analyses could be edited to incorporate
different biomarkers or to allow application to a completely different disease area.

5



B Computational details for diagnosis and incidence model

In order to fit the specified model in the Stan software, in combination with the model
for post-diagnosis biomarker data, we simply add the log-likelihood function:

`=
n∑

i=1

{
log(h (xi ))+ log

(
f (τi )

)}− A

to the log-probability conditional on the current values of the parameters and the de-
lay to diagnosis in each patient. If we use y to denote all biomarker data, θ to denote
the full vector of parameters in the calibration model and τ to denote the full vector
of delay-to-diagnosis times, then the full log-probability for the model with ‘Option 2’
for h (x) can be expressed as:

log(P ) =
n∑

i=1
{log

(
fy

(
yi |θ,γi ,bV L:i ,τi

))+ log
(

fγ
(
γi |θ

))+ log
(

fb:V L (bV L:i |θ)
)

+ log
(
h

(
xi |τi ,b∗,c,d

))+ log
(

f (τi |λ)
)
}

+ log
(
p (θ)

)+ log
(
q

(
b∗,c,d ,λ

))− A.

As we are fitting these models to seroprevalent patients, p (θ) represents the den-
sity function for the multivariate normal approximation to the posterior distribution
of model parameters obtained from the calibration dataset (including lab-specific vari-
ation in the sequence ambiguity model), and q (b∗,c,d ,λ) is the density function for
the prior distribution for the ‘new’ model parameters relating to incidence and delay
to diagnosis. As it would be difficult to set priors for the incidence parameters without
reference to the data, we use uniform priors for b∗, c and d , and a weakly informa-
tive normal distribution with SD 3 is used for the prior of log(λ). If we wish to fit the
delay-to-diagnosis model for different subgroups, then we must define a separate set
of (b∗,c,d ,λ) parameters for each subgroup.

One issue in implementing this analysis in the Stan software is that it we are re-
quired to define a function for the marginal log-probability of the model as a whole
that is differentiable in terms of the entire set of declared model parameters (including
here the τi , on which the xi are conditioned). This causes a problem in defining δ1 (x)
andδ2 (x), which are discontinuous functions of τi (even though the likelihood surface
is a continuous function of τi ). We instead use close approximations to ‘δ1 (x) (x −TL)’
and ‘δ2 (x) (x −TL)’ that are differentiable in terms of τi in defining our model, using
Ti to denote the observed time of HIV diagnosis:

δ1 (xi ) (x −TL) ≈ xi −TL − 1

20
log

(
1+e20(xi−TL)) ,

δ2 (xi ) (x −TL) ≈ 1

20
log

(
1+e20(xi−TL)) , where xi = Ti −τi .

This creates a continuous and differentiable ‘hinge’ function11 for the log of the inci-
dence rate of new HIV infections, with the ‘hinge’ centred at TL .

B.1 Under constant incidence

Absolute incidence of new infections can be eliminated from the joint likelihood func-
tion by conditioning on the total number of cases observed. However, it is still neces-
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sary to model the relative incidence as a function of calendar time unless constant
incidence (h (x) = ci nc ) can be assumed at all points in the period (−∞,TR ]; in this
case the expression can be reduced to:

`c =
n∑

i=1

{
log(ci nc )+ log

(
f (τi )

)}+ log(n!)−n log(A) ,

=
n∑

i=1

{
log

(
f (τi )

)}+ log(n!)−n log(TR −TL) ,

as A is equal to ci nc (TR −TL) for any survival distribution for the delay to diagnosis.

B.2 Integrals for the exponential diagnosis delay model

For an exponential model for the delay-to-diagnosis distribution with rate parame-
ter λ, for b +λ > 0 the integral required for the log-likelihood function can be solved
analytically for the two models of changing incidence proposed:

1: A = ec −ec−λ(TR−TL)

λ+b
+ec

(
e−λ(TR−TL) −1

λ
+ (TR −TL)

)
,

2: A = ec −ec−λ(TR−TL)

λ+b
+ec

(
d

(
e−λ(TR−TL) −1

)+λ(
ed(TR−TL) −1

))
d (d +λ)

.

The ‘b +λ > 0’ condition indicates that the proportional rate of decrease in inci-
dence prior to TL cannot be greater than the rate at which infections are diagnosed,
in such a scenario the number of expected diagnoses in the calender period would be
infinite under the model as defined, and so it is necessary to constrain the b param-
eter to impose this condition; as such, we fit the model in terms of a new parameter
b∗ ∈ (0,∞), with b = b∗−λ.
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C Biomarker model summary for calibration dataset

The model described was fit to data in the calibration dataset using four chains with
a total of 1250 iterations and warm-up of 500 iterations for each, giving 3000 samples
from the posterior distribution of the parameter set. Convergence of the chains to a
stable posterior distribution was checked by visual inspection of trace plots and eval-
uation of the Gelman–Rubin potential scale reduction statistic12 using ‘split chains’10.
The four sample chains were run in parallel, and the required ‘wall-clock’ time was
28 hours and 20 minutes.

The posterior expectations of parameters describing the relationships between CD4
counts and VL measurements and time elapsed since HIV infection were similar to
the maximum likelihood estimates obtained by Stirrup et al.9, including the random
effects and measurement error variance parameters (Table C1). A number of patient
characteristics showed a substantial association with CD4 counts (parameters defined
on square root scale): male heterosexuals showed a lower average intercept (95 % CrI,
–3.12 to –0.10), black ethnicity was associated with a lower intercept (–3.23 to –0.66)
but also a lower rate of decline with time (0.11 to 0.90 higher slope), the ‘other’ ethnic-
ity category was also associated with a lower rate of decline (0.05 to 0.72) as was the
presence of subtype A HIV (0.15 to 1.25). Patient age at infection was not associated
with CD4 count intercept, but age above 32 years was associated with progressively
steeper slopes of CD4 decline with time following infection (Figure C1). A number of
patient characteristics also showed a substantial association with VL measurements
(parameters defined on log10-scale): female heterosexuals had a lower VL intercept (–
0.68 to –0.13) as did patients of black (–0.70 to –0.20) or ‘other’ (–0.46 to –0.05) ethnicity.
Patient age at infection above 32 years was associated with higher VL measurement in-
tercept, but no relationship of age at infection with VL slope was detected (Figure C2).
Given the number of substantial associations observed for CD4 counts and VL mea-
surements, parameters for all patient characteristics were retained in the models used
for further analysis.
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Table C1: Posterior parameter summaries of model fitted to calibration dataset
Mean P2.5. P97.5. n_eff Rhat Description

logit_theta[1] -0.120 -0.424 0.184 1,698.400 1 Amb mod: int
logit_theta[2] -0.759 -0.977 -0.562 3,000 1 Amb mod: tpar
log_alpha[1] 0.028 -0.103 0.190 1,586.300 1 Amb mod: int
log_alpha[2] 0.083 0.052 0.114 3,000 1 Amb mod: tpar
log_beta[1] 5.276 5.033 5.547 1,338.100 1 Amb mod: int
log_beta[2] -0.003 -0.043 0.036 3,000 1 Amb mod: tpar
male_MSW_theta 0.601 -0.077 1.290 3,000 1 Amb mod: MSW para
log_kappa 1.815 1.637 1.963 179.500 1.020 CD4 mod: fBM var
logit_H -1.829 -1.991 -1.656 273.600 1.020 CD4 mod: fBM para
log_vdf 1.440 1.247 1.630 161.200 1.030 CD4 mod: fBM df para
Omega[2,1] -0.389 -0.488 -0.277 3,000 1 CD4-VL RE cor matrix
Omega[3,1] -0.481 -0.537 -0.421 3,000 1 CD4-VL RE cor matrix
Omega[3,2] 0.013 -0.093 0.118 3,000 1 CD4-VL RE cor matrix
Omega[4,1] 0.322 0.225 0.410 1,161.800 1 CD4-VL RE cor matrix
Omega[4,2] -0.705 -0.782 -0.614 1,716.500 1 CD4-VL RE cor matrix
Omega[4,3] -0.495 -0.558 -0.424 1,019.300 1.010 CD4-VL RE cor matrix
sigmaU[1] 4.009 3.802 4.230 3,000 1 CD4 mod: int RE SD
sigmaU[2] 0.899 0.793 1.007 3,000 1 CD4 mod: slope RE SD
sigmaU[3] 0.836 0.797 0.876 3,000 1 VL mod: int RE SD
sigmaU[4] 0.239 0.219 0.261 679.600 1 VL mod: slope RE SD
log_sigma2_cd4 0.238 -0.053 0.488 211.800 1.020 CD4 mod: ME var
int_cd4 23.465 23.141 23.791 3,000 1 CD4 mod: intercept
slope_cd4 -1.266 -1.390 -1.144 1,134.200 1 CD4 mod: slope
male_MSW_int_cd4 -1.614 -3.120 -0.103 3,000 1 CD4 mod: int para
fem_MSW_int_cd4 0.797 -0.602 2.202 3,000 1 CD4 mod: int para
male_MSW_slope_cd4 -0.088 -0.655 0.493 2,205.300 1 CD4 mod: slope para
fem_MSW_slope_cd4 -0.183 -0.684 0.291 1,304.400 1 CD4 mod: slope para
age_int_cd4_1 0.002 -0.037 0.038 3,000 1 CD4 mod: int para
age_int_cd4_2 -0.515 -2.835 1.724 3,000 1 CD4 mod: int para
age_slope_cd4_1 -0.014 -0.026 -0.002 1,232.600 1 CD4 mod: slope para
age_slope_cd4_2 -0.319 -1.136 0.507 1,817.900 1 CD4 mod: slope para
black_int_cd4 -1.959 -3.228 -0.661 3,000 1 CD4 mod: int para
black_slope_cd4 0.497 0.108 0.900 1,395 1 CD4 mod: slope para
other_ethn_int_cd4 -0.335 -1.337 0.712 3,000 1 CD4 mod: int para
other_ethn_slope_cd4 0.375 0.049 0.718 972.700 1 CD4 mod: slope para
crf_subt_int_cd4 0.412 -0.454 1.277 3,000 1 CD4 mod: int para
crf_subt_slope_cd4 0.152 -0.185 0.496 1,804.700 1 CD4 mod: slope para
A_subt_int_cd4 -0.059 -1.446 1.311 3,000 1 CD4 mod: int para
A_subt_slope_cd4 0.703 0.152 1.251 2,060.100 1 CD4 mod: slope para
C_subt_int_cd4 0.223 -1.337 1.891 3,000 1 CD4 mod: int para
C_subt_slope_cd4 -0.117 -0.674 0.458 1,798.200 1 CD4 mod: slope para
other_subt_int_cd4 0.307 -1.514 2.051 3,000 1 CD4 mod: int para
other_subt_slope_cd4 0.597 -0.011 1.236 3,000 1.010 CD4 mod: slope para
log_sigma_VL -0.748 -0.764 -0.732 3,000 1 VL mod: ME SD
beta_VL[1] 4.404 4.335 4.476 408.900 1.010 VL mod: int
beta_VL[2] 0.072 0.043 0.100 324.100 1.010 VL mod: slope
beta_VL[3] 1.825 1.731 1.925 3,000 1 VL mod: peak acute
beta_VL[4] 2.613 2.504 2.720 3,000 1 VL mod: log decl para
male_MSW_int_VL -0.013 -0.314 0.278 490 1 VL mod: int para
fem_MSW_int_VL -0.409 -0.684 -0.135 529.900 1.010 VL mod: int para
age_int_VL_1 0.005 -0.002 0.012 455.500 1 VL mod: int para
age_int_VL_2 0.133 -0.317 0.616 533 1 VL mod: int para
black_int_VL -0.441 -0.699 -0.196 325.100 1.010 VL mod: int para
other_ethn_int_VL -0.247 -0.464 -0.046 357.600 1.010 VL mod: int para
crf_subt_int_VL 0.026 -0.150 0.207 388.800 1.010 VL mod: int para
A_subt_int_VL 0.036 -0.226 0.311 643.900 1.010 VL mod: int para
C_subt_int_VL 0.099 -0.218 0.424 598.300 1 VL mod: int para
other_subt_int_VL -0.225 -0.573 0.139 918.100 1 VL mod: int para
male_MSW_slope_VL 0.015 -0.110 0.140 1,180.900 1 VL mod: slope para
fem_MSW_slope_VL 0.037 -0.072 0.144 717 1 VL mod: slope para
age_slope_VL_1 0.001 -0.002 0.003 489.700 1.010 VL mod: slope para
age_slope_VL_2 -0.094 -0.278 0.089 619.600 1 VL mod: slope para
black_slope_VL -0.028 -0.124 0.067 726.400 1 VL mod: slope para
other_ethn_slope_VL -0.016 -0.096 0.065 463.200 1 VL mod: slope para
crf_subt_slope_VL 0.025 -0.049 0.101 428.100 1.010 VL mod: slope para
A_subt_slope_VL -0.069 -0.188 0.057 1,209.400 1.010 VL mod: slope para
C_subt_slope_VL 0.020 -0.109 0.146 980.600 1 VL mod: slope para
other_subt_slope_VL -0.001 -0.144 0.141 1,034.500 1.010 VL mod: slope para
labOmega[1,2] -0.053 -0.686 0.635 1,179.400 1 lab RE cor matrix
labOmega[1,3] -0.079 -0.679 0.568 1,487 1 lab RE cor matrix
labOmega[2,3] 0.358 -0.454 0.883 568 1.010 lab RE cor matrix
lab_sigma[1] 0.451 0.200 0.824 1,402.600 1 lab RE theta SD
lab_sigma[2] 0.140 0.012 0.313 711.900 1 lab RE alpha SD
lab_sigma[3] 0.322 0.077 0.603 627.100 1 lab RE beta SD

cor, correlation; decl, decline; df, degrees of freedom; int, intercept; fBM, fractional Brownian motion; ME, measurement error; MSW, men who have sex with women

(heterosexual transmission); n_eff, effective sample size; para, parameter; P2.5, 2.5th percentile of posterior distribution; P97.5, 97.5th percentile of posterior distribution;
RE, random effect; Rhat, Gelman–Rubin potential scale reduction statistic; tpar, interaction parameter with time; var, variance; VL, viral load.
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Figure C1: Plot of adjustment of CD4 count (a) intercept (value at seroconversion) and
(b) slope (with time elapsed since seroconversion, in years) according to patient age
at seroconversion (in years). Effects have been modelled as a quadratic function of
patient age centred at 32 years, and the model for CD4 counts is defined on a square-
root scale. Plots are displayed of the expected function value (black line) and 95 %
credibility interval (dashed line) over the joint posterior distribution of relevant model
parameters.
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Figure C2: Plot of adjustment of viral load (VL) measurement (a) intercept (value at
seroconversion) and (b) slope (with time elapsed since seroconversion, in years) ac-
cording to patient age at seroconversion (in years). Effects have been modelled as a
quadratic function of patient age centred at 32 years, and the model for VL measure-
ment is defined on a log10-scale. Plots are displayed of the expected function value
(black line) and 95 % credibility interval (dashed line) over the joint posterior distribu-
tion of relevant model parameters.
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D Further details for seroprevalent cohort

As for the calibration dataset, the ‘incidence and delay-to-diagnosis’ models were fit-
ted using four chains with a total of 1250 iterations and warm-up of 500 iterations for
each, giving 3000 samples from the posterior distribution of the parameter set, and
convergence of the chains to a stable posterior distribution was checked. The four
sample chains were run in parallel, and the required ‘wall-clock’ time for the most
complex model was 18 hours and 50 minutes.

Further analysis of the posterior distributions of the true date of HIV infection in
each patient was carried out for the model with varying incidence before and dur-
ing the analysis window, with average diagnosis delay divided by ethnicity subgroup.
This showed that a large majority of infections occurred either during or within 5 years
prior to the analysis window (Figure D1), supporting the use of a model for HIV inci-
dence that could plausibly cover this period.
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Figure D1: Plots of the pooled posterior density of infection times of patients included
in the analysis. Plots are shown for the model with varying incidence during the win-
dow period and differences in delay-to-diagnosis distribution between groups, for all
patients pooled (a) and for patients of white (b), black (c) or other (d) ethnic classifi-
cation.
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D.1 Predictions in individual seroprevalent patients

To demonstrate the use of the modelling framework in individual patients we explore
predictions regarding the timing of HIV infection in two illustrative examples from the
seroprevalent cohort. The first of these patients was randomly selected and the second
was chosen because their clinical data provides strong evidence of recent infection.

Patient 1 was diagnosed with HIV in 2013 and a viral sequence sampled at time of
diagnosis showed ambiguous nucleotide calls at 0.66 % of positions. CD4 cell counts
of 300 and 295 cells/µL and log10 VL of 4.5 and 4.8 copies/mL were recorded at time of
diagnosis and 40 days later, respectively. The genetic and biomarker data do not pro-
vide strong evidence regarding the exact timing of infection in this case, and when a
uniform prior is used the posterior distribution obtained indicates that infection could
plausibly have occurred at any point in the patient’s adult life (Figure D2b). However,
when information regarding the delay-to-diagnosis distribution is pooled across sub-
groups of patients the posterior distribution obtained indicates that the infection is
very likely to have been acquired within the 5 years prior to the date of diagnosis (Fig-
ure D2a).

Patient 2 was diagnosed with HIV in 2009 and a viral sequence sampled 12 days
after diagnosis showed no ambiguous nucleotide calls. The first three CD4 cell counts
obtained were 615, 875 and 800 cells/µL at 12, 140 and 260 days after diagnosis, and
the first three log10 VL measurements were 5.5, 2.8 and 3.4 copies/mL at 12, 140 and
430 days after diagnosis. The combination of no sequence ambiguity, high CD4 count
and steep decrease in VL all indicate that diagnosis was close to the date of infection,
and this is reflected in the posterior distribution for the timing of infection whether or
not the delay-to-diagnosis distribution was explicitly modelled (Figure D2c and d).
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Figure D2: Illustrative plots of the posterior distributions of date of HIV infection
in Patient 1 ((a) and (b)) and Patient 2 ((c) and (d)) given their sequence ambiguity,
CD4 and viral load (VL) data. (a) and (c) show the posterior distribution from the
full model with ethnic group-specific exponential distribution for delay to diagnosis
and allowing changes in HIV incidence prior to and during the analysis window. (b)
and (d) show the posterior distribution obtained from a patient-by-patient analysis
with uniform prior distribution for the timing of HIV infection between the patient’s
16th birthday and the date of diagnosis; in these plots the point estimate of date of
infection obtained by CD4 back-estimation is also shown (vertical blue line). Kernal
density smoothing of samples from the posterior distribution has been employed, us-
ing a Gaussian kernal with bandwidth of 1 week; a smoother estimate of the posterior
distribution could be obtained by generating a greater number of samples from the
posterior distribution in each case.
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E Repeated simulation analysis without truncation of ob-
servation times

For both CD4 back-estimation and the use of our full biomarker model with uniform
priors for the diagnosis delay, predictions are generated independently in each simu-
lated patient. However for the methodology developed that includes the full biomarker
model and an exponential survival model for delay to diagnosis times, predictions of
the diagnosis delay in individual patients are affected by the distribution fitted to the
cohort as a whole. To evaluate the performance of this methodology across multi-
ple cohorts, we generated an additional 100 cohorts of 2000 simulated patients and
refitted the model and evaluated individual-level predictions for each. The results
obtained were consistent with those for the single simulated cohort presented in the
main text of the paper (Table E1).

Table E1: Summary of 100 repetitions of the simulation analysis of 2000 patients with-
out truncation of observation times. Our methodology was applied using an exponen-
tial survival model for diagnosis delays.

n/N or mean±SD*

Successful model fit 97/100
Exponential dist. rate para.

Posterior expectation 0.509 ± 0.019
Coverage of 95 % CrI 95/97

Mean absolute error (years) 1.047 ± 0.025
Bias (mean error) (years) -0.0017 ± 0.056

*Mean and SD are given treating the result summary for each simulated cohort as a
single observation.
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