Simulation set-up

In this additional file, we explain how we run our simulations and what scenarios we tested. In our scenarios, we fixed the number of variables, of maximum parent per node and the correlation between biomarkers. We tested different value for the number of observations, the number of measurement (visits) and for the independence test cut-off alpha leading to a total of 8 scenarios.

Scenarios

We generated data faithful to a by using the following parametrisations:

- $p=20$
- $n_{\text {visits }} \in\{4,6\}$
- $\max P=3$
- $n \in\{50,1000\}$
- $\alpha \in\{0.02,0.2\}$
- $\rho_{\min }=0.5, \rho_{\max }=0.7$
- $\sigma=1$

For each scenario we generated a DAG with $p * n_{v i s}+Y$ variables and then sampled 500 different datasets per DAG. We calculated the average SHD, sensibility and specificity for estimated CPDAGs with both CP-stable and COPC-stable based on the 500 datasets.

Generate a DAG with repeated measures of covariates

To generate a DAG that has repeated measures and an expected number of parents per node max P, we used the following approach: first, we generated a $\left(p \times n_{v i s i t s}+Y\right) \times\left(p \times n_{v i s i t s}+Y\right)$ weighted matrix $w M$, where p is the number of biomarkers, $n_{\text {visits }}$ the number of visits (measurements) and Y the outcome; with independent realizations of $\operatorname{Uniform}(0.5,1)$ in the upper triangle of the matrix and zeroes in the remaining entries. At the end, if $w M_{i, j}>0$ then, it meant there was an arrow from X_{i} to $X_{j}\left(X_{i} \rightarrow X_{j}\right)$ with a weight of $w M_{i, j}$. The maximum parent for each node was limited by maxP. Then, based on the true DAG obtained, we generated i.i.d samples using algorithm 1 .

```
Algorithm 1: Generation of data based on a DAG with repeated measures of covariates with a single outcome
    Input: number of observations \((n)\), weighted matrix \((w M)\), sigma \((\sigma), \rho_{\min }, \rho_{\max }\), number of biomarkers \((p)\),
            number of measurements ( \(n_{v i s i t s}\) )
    for Subject \(i \leftarrow 1\) to n do
        for Number of Biomarkers \(j \leftarrow 1\) to \(p\) do
            Let \(V_{j}\) be the set of measurements for the biomarker \(j\)
            Let the vector \(\mu_{V_{j}}=E\left(V_{1}\right)=E\left(V_{2}\right)=E\left(V_{n_{v i s i t s}}\right)=0\)
            \(\rho_{j} \sim \operatorname{Uniform}\left(\rho_{\min }, \rho_{\max }\right)\)
            \(\Sigma_{j}=\left(\begin{array}{ccccc}\sigma^{2} & \rho^{1} \sigma^{2} & \rho^{2} \sigma^{2} & \ldots & \rho^{n_{v i s i t s}} \sigma^{2} \\ \rho^{1} \sigma^{2} & \sigma^{2} & \rho^{1} \sigma^{2} & \ldots & \rho^{n_{v i s i t s}-1} \sigma^{2} \\ \rho^{2} \sigma^{2} & \rho^{1} \sigma^{2} & \sigma^{2} & \ldots & \rho^{n_{v i s i t s}-2} \sigma^{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho^{n_{v i s i t s}} \sigma^{2} & \rho^{n_{v i s i t s}-1} \sigma^{2} & \rho^{n_{v i s i t s}-2} \sigma^{2} & \ldots & \sigma^{2}\end{array}\right) \epsilon_{i, V_{j}} \sim N_{n_{v i s i t s}}\left(\mu_{j}, \Sigma_{j}\right)\)
    \(\epsilon_{i, \text { Outcome }} \sim N(0,1)\)
        end
    end
    \(p_{t o t}=p \times n_{\text {visits }}+1\) (outcome)
```

 for Subject \(i \leftarrow 1\) to n do
 for Variable \(v \leftarrow 1\) to \(p_{t o t}\) do
 if Variable \(_{v}\) has no parent then
 Variable \(_{i, v}=\epsilon_{\text {Variable }_{i, v}}\)
 end
 else if Variable \(_{v}\) has at least 1 parent then
 Variable \(_{i, v}=\sum_{j=1}^{n_{\text {parents }}}\left(w M_{j, v} \times P A_{j}\left(\right.\right.\) Variable \(\left.\left._{i, v}\right)\right)+\epsilon_{\text {Variable }_{i, v}}\)
 if \(v=p\) then
 Variable \(_{i, p} \sim\) Bernoulli \(^{\left(\text {logit }^{-1}\left(\text { Variable }_{i, p_{t o t}}\right)\right)}\)
 end
 end
 end
end
Output: Simulated database

