Appendix

Calculation of the sample size formula

When combining (6) and (7) and replacing $\Delta_{j}^{2} \mid r_{j}$ by it's expectation, the following calculations lead to the overall sample size formula (9).

$$
\begin{aligned}
& \left(q_{1-\alpha / 2}+q_{1-\beta}\right)^{2}=\frac{\mu^{2}}{\operatorname{Var}(\mu)} \\
\Longleftrightarrow & N^{2}-N \frac{\sigma^{2}(k+1)^{2}}{k}\left(\frac{q_{1-\alpha / 2}+q_{1-\beta}}{\mu}\right)^{2} \\
& =\tau^{2}(k+1)^{2} \sum_{j=1}^{c} \mathrm{E}\left(\Delta_{j}^{2} \mid r_{j}\right)\left(\frac{q_{1-\alpha / 2}+q_{1-\beta}}{\mu}\right)^{2}
\end{aligned}
$$

This quadratic equation can be solved with standard algebra techniques and leads to the following result

$$
\begin{aligned}
& N_{1,2}=\frac{\sigma^{2}(k+1)^{2}}{2 k}\left(\frac{q_{1-\alpha / 2}+q_{1-\beta}}{\mu}\right)^{2} \\
& \pm \sqrt{\frac{\sigma^{4}(k+1)^{4}}{4 k^{2}}+\frac{\tau^{2}(k+1)^{2} \mu^{2} \sum_{j=1}^{c} \mathrm{E}\left(\Delta_{j}^{2} \mid r_{j}\right)}{\left(q_{1-\alpha / 2}+q_{1-\beta}\right)^{2}}} \\
& \quad \cdot\left(\frac{q_{1-\alpha / 2}+q_{1-\beta}}{\mu}\right)^{2} \cdot
\end{aligned}
$$

Since we are interested in positive integers, we take the positive solution from above.

