Appendix: Product-integral

Let $\lambda_{qr}(t)$ be the discrete hazard (intensity) function from state q to state r at time t, then, a nonparametric maximum likelihood estimator of $\lambda_{qr}(t)$ is calculated as $N_{qr}(t)/Y_q(t)$, where $N_{qr}(t)$ is the transition number from state q to state r and $Y_q(t)$ is the number of at risks in state q. The transition probability matrix $\mathbf{P}(t_0,t) = [P_{qr}(t_0,t)]$ can be estimated using a transition hazard matrix $\hat{\lambda}(t) = [\hat{\lambda}_{qr}(t)]$ with $\hat{\lambda}_{qq}(t) = -\sum_{r:r \neq q} \hat{\lambda}_{qr}(t)$ as follows:

$$\hat{\mathbf{P}}(t_0,t) = \prod_{u:u\in(t_0,t]} \left\{ \mathbf{1} + \hat{\boldsymbol{\lambda}}(u) \right\}$$

where \prod is product integral and 1 is the identity matrix.