Additional File 2: Construction of the pointwise and simultaneous confidence bands and the confidence interval of the roots

Pointwise confidence bands

A pointwise $1-\gamma$ confidence band $[l_p(x), u_p(x)]$ for $\theta(x)$ has to satisfy the property $P(\theta(x) \in [l_p(x), u_p(x)]) \ge 1 - \gamma$ for each $x \in (0, 1)$. It can be constructed using the fact that $\hat{\theta}(x)$ is a linear function of $\hat{\beta}$ and β is part of the regression parameter vector (α, β) of the models presented in Section 5. The design matrix \boldsymbol{X} of these models can be expressed as

$$\boldsymbol{X} = \left(\begin{array}{cc} \boldsymbol{X}_1 & \boldsymbol{X}_1 \\ \boldsymbol{X}_0 & 0 \end{array}\right)$$

with

where x_i is the covariate value of the *i*-th patient among the n_0 patients with T = 0, and X_1 is defined analogously with the covariate values of the patients with T = 1. Following Liu (2011), we have

$$[l_p(x), u_p(x)] = [\mathbf{x}'\hat{\boldsymbol{\beta}} \pm t_{n-2(p+1)}^{\gamma/2} \hat{\sigma} \sqrt{\mathbf{x}' \Delta \mathbf{x}}]$$

where p is the number of covariates, i.e. p = 1 in the linear analysis model or p = 2in the quadratic analysis model, respectively, $\boldsymbol{x} = (1, x)$ or $\boldsymbol{x} = (1, x, x^2)$, $\hat{\boldsymbol{\beta}} = (\hat{\beta}_0, \hat{\beta}_1)$ or $\hat{\boldsymbol{\beta}} = (\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)$, $\boldsymbol{\Delta} = (\boldsymbol{X}_1 \boldsymbol{X}_1')^{-1} - (\boldsymbol{X}_0 \boldsymbol{X}_0')^{-1}$ and $\hat{\sigma}$ is the estimator of the standard deviation σ of the error variance, i.e. $\hat{\sigma} = \sqrt{\left\| \boldsymbol{Y} - \boldsymbol{X}(\hat{\boldsymbol{\alpha}}, \hat{\boldsymbol{\beta}}) \right\|^2 / (n - 2(p+1))}$, where $\boldsymbol{Y} = (y_1, ..., y_n)$ with y_i being the outcome of the *i*-th patient when ordered in correspondence with the design matrix. t_n^{α} denotes the upper α -quantile of a t-distribution with *n* degrees of freedom.

Simultaneous confidence bands

A simultaneous $1 - \gamma$ confidence band $[l_p(x), u_p(x)]$ for $\theta(x)$ has to satisfy the property $P(\theta(x) \in [l_p(x), u_p(x)]$ for all $x \in (0, 1)) \geq 1 - \gamma$. Simultaneous confidence bands can be constructed by blowing up the pointwise confidence bands until this property is reached. So the bands have the form

$$[l_s(x), u_s(x)] = [\mathbf{x}'\hat{\boldsymbol{\beta}} \pm c\hat{\sigma}\sqrt{\mathbf{x}'\Delta\mathbf{x}}]$$
(1)

with some constant c which has to be chosen accordingly. Following Liu (2011), in the case of a linear analysis model c has to solve the equation

$$\gamma = \frac{\phi}{\pi} \left(1 + \frac{c^2}{(n-2)} \right)^{-(n-2)/2} - \frac{2}{\pi} \int_0^{(\pi-\phi)/2} \left(1 + \frac{c^2}{(n-2)\sin^2(\Theta+\phi/2)} \right)^{-(n-2)/2} d\Theta$$

where $\cos \phi = (1,0)' \Delta(1,1) / \sqrt{(1,0)' \Delta(1,0)(1,1)' \Delta(1,1)}$. We solve the equation by numerically approximating the integral using the trapezoidal rule and determining the solution numerically by using the bisection method.

In the case of a quadratic analysis model, we follow Knafl et al. (1985) and consider a grid (x_1, \ldots, x_{1000}) of x-values on the interval (0,1). As each $\hat{\theta}(x)$ is a linear function of $\hat{\beta}$, we can compute the covariance matrix of $\hat{\theta}(x_1), \ldots, \hat{\theta}(x_{1000})$. We then determine cby generating 10,000 draws from the corresponding multivariate normal distribution and looking for the largest value of c such that (1) holds. Note that we can assume an arbitrary value of the mean values, i.e. of $\theta(x)$, in these computations.

Confidence intervals for the roots

We estimate the roots of $\theta(x)$ by considering $h_{\eta}(\hat{\beta}) := \theta_{\hat{\beta}}^{-1}(\eta)$ and determining the set $h_0(\hat{\beta})$. In the case of two roots, we can express h_0 as two single valued functions functions $h_0^1(\hat{\beta})$ and $h_0^2(\hat{\beta})$ of $\hat{\beta}$, such that $x_r^j = h_0^j(\hat{\beta})$; otherwise, h_0 is already single valued and we have $x_r = h_0(\hat{\beta})$. Since h_0^j and h_0 are continuous and differentiable in $\hat{\beta}$, we can use the delta rule to determine approximately the variance of the roots, and hence can construct confidence intervals assuming a normal distribution of the roots.

In the case of a linear analysis model, we have a single root $x_r = -\frac{\beta_0}{\beta_1}$. In the case of a quadratic analysis model, we have no root, if $\beta_1^2 - 4\beta_0\beta_2 < 0$, a single root $x_r = -\beta_1/2\beta_2$ if $\beta_1^2 - 4\beta_0\beta_2 = 0$, or two roots $x_r = (-\beta_1 \pm \sqrt{\beta_1^2 - 4\beta_0\beta_2})/2\beta_2$ otherwise. In the latter case we ignored roots outside of the interval (-0.25,1.25) in applying CIR, as such roots are often associated with wide CIs covering the whole interval (0,1).

References

Knafl, G., Sacks, J., Ylvisaker, D.: Confidence bands for regression-functions. Journal of the American Statistical Association 80(391), 683–691 (1985)

Liu, W.: Simultaneous Inference in Regression. CRC Press, Boca Raton (2011)