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1 Technical details on the approximations 

Again, we first consider the approximations for a binary risk factor, A, and later generalize.  
Consider a second order Taylor expansion of: �eβ1� − 1�/eβ1�  = 1 − e−β1�   around β1� = 0.  

That is: 1 − e−β1�  ~1 − �1 − β1� + β12�/2� = β1��1 − β1�/2�.  Plugging this approximation into 
(2b) yields: 

PAF� ~P(A = 1|Y = 1)� β1��1− β1�/2�.  (S1) 

(3) is still slightly unwieldly for our purposes; a couple of further steps yields simpler 
expressions: 

(a) For small β1�, ignoring, we can ignore the second order factor (S1) to derive:  
 

PAF�  ~P(A = 1|Y = 1)� β1�.  (S1a) 
 

 
 

In practice, this first-order approximation may be inacceptably inaccurate, and is not 
recommended for use.  For instance, to achieve an acceptable approximation 
(perhaps defined as the ratio of (S1) and (S1a)) being within 20%), we can solve 
�1 − β1�/2� > 0.8, leading to β1� < 0.4, implying that this approximation should be 
used for risk factors with odds ratios less than 1.5. 
 
 

(b) If |β1|�  is larger, we may need to keep the quadratic factor in (S1) to obtain an 
acceptable approximation.   To derive an alternative approximation, note that (S1) 
can be rewritten as  PAF� ~ β1�F wher F = P(A = 1|Y = 1)� �1 − β1�/2� 
 
It follows that: 

F = P(A = 1|Y = 0)� P(A = 1|Y = 1)�

P(A = 1|Y = 0)� �1 − β1�/2�      

 

= P(A = 1|Y = 0)� P(Y = 1|A = 1)� /P(Y = 1)�

P(Y = 0|A = 1)� /P(Y = 0)� �1 − β1�/2� 

 
 

~P(A = 1|Y = 0)� P(Y = 1|A = 1)�

P(Y = 1)� �1 − β1�/2� , 

 
with the equality in line 2 following by Bayes theorem and the final approximation by 
the rare disease assumption. 
 



Now if β1� > 0, we would expect that P(Y = 1|A = 1)� /P(Y = 1)� >  1  (provided 
confounding isn’t reversing the conditional and unconditional directions of 
association), and for the same reason when β1� < 0  it is likely that P(Y = 1|A = 1)� /
P(Y = 1)� <  1.  Under the scenario that the 2nd and 3rd terms in (3) are approximate 
reciprocals:  
 

P(Y = 1|A = 1)�

P(Y = 1)� �1 − β1�/2�~1 (S1b) 

 
 

and the two-term expansion given in (3) can be approximated by (3c): 
 

     
PAF� ~P(A = 1|Y = 0)� β1�. (S1c) 

 
 
That is, an approximation for the population attributable fraction is the prevalence of 
the exposure in controls multiplied by the log-odds ratio of the association.   
As (S1c) may approximate the 2nd order Taylor expansion, it will usually be more 
accurate than (S1a), which is the first order approximation.  See section 2 for a 
justification of when this might be most accurate.   
 

Approximations for multicategory and continuous exposures. 

The previous approximations extend easily to multicategory exposures.  Suppose that the 
exposure A can take K + 1 values: a ∈ 0,1, … , K with a = 0, a reference level such that: 

P�Ya=j = 1� ≥ P(Ya=0 = 1) (S2) 

for all j.  Under the assumptions that (a) adjusting for the set of variables, 𝐂𝐂, is sufficient to 
eliminate confounding of the exposure/outcome relationship, that is Ya=j, that is A ⊥ Ya=j|C  
for all j (b) that the relative risk P�Ya=j = 1|C = c�/P(Ya=0 = 1|C = c) = P(Y = 1|A =
j, C = c)/P(Y = 1|A = 0, C = c) = RRj is independent of c for all j, (1) can be re-expressed 
as: 

PAF = �P(A = j|Y = 1)�RRj − 1�/RRj

K

j=1

. (S3) 

Under the rare disease assumption, the absence of an interaction (between A and C) 
suggests that the conditional association between Y and A given c should be modelled via 
logistic regression:  

logit�P(Y = 1| A = j, C = c)� = β0 + βj + f(c),  

for j ≥ 1.   (9) can then be estimated as: 



PAF� = �P(A = j|Y = 1) �eβȷ� − 1� /eβȷ�
K

j=1

. (S4) 

Assuming  ‘small’ βj, j ≤ K, each term in (S4) can in turn be approximated via Taylor 
expansion as before (when deriving (S1c)): 

PAF� ~ � P(A = ȷ|Y = 0)� βȷ�
K

j=1

 (S5) 

Finally, consider a continuous exposure, A, taking any possible value on the real line. 
Suppose that j0 is a minimum risk level of the exposure such that: 

P�Ya=j = 1� ≥ P�Ya=j0 = 1� (S6)  

In this case, assuming again no interaction between the exposure, A and C on the relative 
risk scale, and that adjustment for C is sufficient to eliminate confounding, we can re-
express (E5) from the main manuscript as  

PAF = � f(j|1)
RR(j) − 1

RR(j)
dj

∞

−∞
, (S7) 

where P�Ya=j = 1|C = c�/P�Ya=j0 = 1|C = c� = P(Y = 1|A = j, C = c)/P(Y = 1|A =
j0, C = c) = RR(j).  We assume again an additive model relating the response to exposure 
and possible confounders,C: 

logit�P(Y = 1| A = j, C = c)� = βj0 + β(j)  + f(c), (S8) 

where β(j) is a continuous positive function on the real line satisfying β(j0) = 0. 

The same approximations work again, except that the sums in (S5) now turns into an 
integral: 

 

PAF� ~  � f(ȷ|0)�β(ȷ)�  dj
∞

−∞
, (S9) 

where f(ȷ|0)�  is a estimated density functions (with respect to Lebesgue measure) for A in 
controls (i.e. when Y = 0).   

 

 

 

 

 

 



2 When is the approximation most accurate? 

 

The approximation (S1b): 

P(Y = 1|A = 1)�

P(Y = 1)� �1 − β1�/2�~1 (S1b) 

was used to justify (S1c), which is the approximation used in the plots.  This suggests that 
the error of approximating the second order Taylor expansion P(A = 1|Y = 1)� β1��1 −
β1�/2�  with  PAF� ~P(A = 1|Y = 0)� β1�  should be minimal when   

P(Y = 1|A = 1)�

P(Y = 1)� = �1 − β1�/2�
−1 (S10) 

When is (S10) approximately true?  Well, the left hand side (LHS) can be re-expressed as: 

LHS = �
P(A = 1)� P(Y = 1|A = 1)� + P(A = 0)� P(Y = 1|A = 0)�

P(Y = 1|A = 1)� �
−1

 

= �P(A = 1)� + RR�−1P(A = 0)� �
−1

=
RR�

RR�P(A = 1)� + P(A = 0)�  

~
eβ�

eβ�P(A = 1)� + P(A = 0)�  

~
1 + β�

�1 + β��P(A = 1)� + P(A = 0)�  

the last approximation via a first order Taylor approximation of eβ� around β� = 0 

 

Where as the RHS is: 

RHS =  �1 − β1�/2�
−1

 ~ 1 + β/2 

 

again via a first order Taylor approximation of �1 − β1�/2�
−1

around β� = 0. 

 

Equating the right and left sides we get: 

1 + β�

�1 + β��P(A = 1)� + P(A = 0)� = 1 + β/2 

 



which will be approximately true if P(A = 1)�  ~P(A = 1|Y = 0)� = 0.5.  That the 
approximation works best (in terms of ratio-bias) when the prevalence of the risk factor is 
roughly 0.5 is shown numerically in the Figure 3. 

 

 

3  Proof of equivalence of (𝟏𝟏) and (𝟐𝟐) in the main manuscript. 

 

Assume a continuous covariate C with possible values in the real line, and density f(c) with 
respect to Lebesgue measure.  The argument below can be generalized for multidimensional 
C mixing both discrete and continuous variables by replacing the integrals with a mixture of 
integrals and summations over the respective ranges of the measured covariates. 

PAF =
P(Y = 1) − P(Ya=0 = 1)

P(Y = 1)  

E(E(Y|A, C)) − E(E(Ya=0|A, C))
P(Y = 1)  

=
∑ ∫P(Y = 1|A = a, C = c) − P(Ya=0 = 1|A = a, C = c) f(c)P(A = a|C = c)dca∈0,1

P(Y = 1)  

Note that the conditional exchangeability condition is that Ya=0 and A are independent 
given the covariates c.  This implies that P(Ya=0 = 1|A = a, C = c) = P(Ya=0 = 1|A =
0, C = c).  Noting that Y = Ya=0 when A=0, it follows that P(Ya=0 = 1|A = 0, C = c) =
 P(Y = 1|A = 0, C = c).  Plugging this into the above: 

 

=
∑ ∫(P(Y = 1|A = a, C = c) − P(Y = 1|A = 0, C = c)) P(A = a|C = c)f(c)dca∈0,1

P(Y = 1)  

=
∫(P(Y = 1|A = 1, C = c) − P(Y = 1|A = 0, C = c)) P(A = 1|C = c)f(c)dc

P(Y = 1)  

=
∫(1 − RR−1)(P(Y = 1|A = 1, C = c) P(A = 1|C = c)f(c)dc

P(Y = 1)  

= (1 − RR−1)
∫(P(Y = 1, A = 1|C = c)f(c)dc

P(Y = 1)  

= (1 − RR−1)
P(A = 1, Y = 1)

P(Y = 1)  

= (1 − RR−1)P(A = 1|Y = 1) 

 


