
Modeling perinatal mortality in twins via generalized
additive mixed models: a comparison of estimation

approaches

Muhammad Abu Shadeque Mullah1, James A Hanley1 and Andrea Benedetti∗1

1Department of Epidemiology, Biostatistics and Ocuupational Health, McGill University

Supplemetary Material

∗Correspondence to Dr. Andrea Benedetti, Department of Epidemiology, Biostatistics, and Occupa-
tional Health, Faculty of Medicine, McGill University, Purvis Hall, 1020 Pine Avenue West, Montreal,
QC H4B 2V2, Canada (e-mail: andrea.benedetti@mcgill.ca).

1



The Mixed Model Representation of the GAMMs

Generalized Additive Mixed Models (GAMMs)

Suppose the observations for the jth member of the ith cluster consist of a response
variable Yij (i = 1, 2, . . . ,m; j = 1, 2, . . . , ni) and p covariates xij = (x1ij, . . . , xpij)

T

associated with fixed effects and q × 1 vector of covariates zij associated with random
effects. For the twin-pairs data, each twin-pair is considered as a cluster so that the cluster
size ni = 2 for all clusters, andm is the total number of twin-pairs. Let Yi = (Yi1, . . . Yini

)T

and define xi and zi similarly. Given the q×1 vector of random effects, b, the generalized
additive mixed models takes the form

g(µi) = β0 + f1(x1i) + · · ·+ fp(xpi) + zTi b, (1)

where µi = E(Yi | b), g(·) is a strictly monotone and differentiable link function, fr(·)(r =
1, . . . , p) is a centered and twice-differentiable smooth function, and the random effects
b are assumed to be distributed as N(0 ,D).

Penalized Spline Estimation

We model the smooth function fr(·) by using the thin plate regression splines of Wood
[19]. Taking a large number of knots (Kr) to ensure the desired flexibility, we form a
basis matrix Br whose elements are thin plate regression spline basis functions Brk(xri).
We then represent fr(·) by a regression spline

fr = Brβr (2)

and prevent overfitting by imposing the restriction

βTr Srβr ≤ c (3)

for some nonnegative constant c, where βr = (βr1, . . . , βrKr)
T is a vector of basis coef-

ficients, and Sr is a positive semi-definite penalty matrix. To ensure identifiability we
choose Br and βr such that

1TBrβr = 0, (4)

where 1 is a vector of all 1s.

The Penalized Spline as a Mixed Model

Following Wood [25], we re-parameterize fr(·) in terms of a fixed effects parameter vector
βrF and a random effects βrR via a one-to-one transformation as

fr = BrFβrF +BrRβrR, (5)

where βrR ∼ N(0, τrI) with τr = 1/λr, BrF are the columns of Br for which the penalty
matrix Sr has zero eigenvalues, and BrR = BrUr

√
D−1
r in which Ur is the matrix con-

taining eigenvectors of Sr corresponding to the strictly positive eigenvalues arranged in
descending order of magnitude (Er), and Dr is the diagonal matrix containing Er on the
leading diagonal.
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GAMMs as Generalized Linear Mixed Models (GLMMs)

Substituting (5) in (1), we obtain

g(µ) = BFβF +BRβR + Zb, (6)

where µ = (µ1, . . . , µm)T , BF = (1, B1F , . . . , BpF ) is the fixed effects design matrix, BR =
(B1R, . . . , BpR) is the random effects design matrix associated with the smooth functions,
Z = (z1, . . . , zq) is the typical random effects model matrix, βF = (β0, β

T
1F , . . . , β

T
pF )T

is a vector of fixed effect parameters, and βR = (βT1R, . . . , β
T
pR)T and b are independent

random effects with distributions βR ∼ N(0,Λτ ) and b ∼ N(0, Dγ) in which Λτ =
diag (τ1I, . . . , τpI). The GAMM (6) can be written more compactly in the form of a
GLMM as

g(µ) = XβF + Zu, (7)

where X = BF , Z = (BR, Z), u = (βR, b), and u ∼ N(0,Στ,γ) with

Στ,γ = Cov (u) =

[
Λτ 0
0 Dγ

]
.

Results of Twins Mortality Data Analysis

Table S1: Stratified comparisons of second and firstborn twins: adjusted ORs of peri-
natal death obtain from the Bayesian fit of the logistic additive mixed effects models

Variable adjusted OR Variance of

(95 % CI) random intercepts

Bayesian-UNIF Bayesian-HC Bayesian-IG Bayesian-UNIF Bayesian-HC Bayesian-IG

Birth weight, heavier in %a

Heavier firstborn twin

≥ 25% 3.56 (2.38, 4.82) 3.42 (2.47, 4.70) 3.37 (2.30, 4.54) 3.9 3.5 2.1

15 to < 25% 2.05 (1.52, 2.60) 1.97 (1.58, 2.49) 1.94 (1.47, 2.41) 6.1 5.5 3.3

5 to < 15% 1.44 (1.16, 1.66) 1.39 (1.20, 1.62) 1.37 (1.12, 1.57) 4.9 4.4 2.6

Similar birth weight

within ± 5% 1.32 (1.09, 1.45) 1.27 (1.13, 1.43) 1.25 (1.05, 1.38) 6.0 5.4 3.1

Heavier secondborn twin

5 to < 15% 1.24 (0.94, 1.44) 1.19 (0.97, 1.40) 1.17 (0.90, 1.35) 5.2 4.7 2.7

15 to < 25% 0.95 (0.69, 1.23) 0.91 (0.71, 1.20) 0.89 (0.66, 1.16) 6.2 5.6 3.3

≥ 25% 0.34 (0.24, 0.46) 0.33 (0.25, 0.45) 0.32 (0.23, 0.43) 3.6 3.3 2.0

a Birthweight difference in percentage comparing the heavier vs lighter twins.
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