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The Mixed Model Representation of the GAMMs
Generalized Additive Mixed Models (GAMDMs)

Suppose the observations for the jth member of the ¢th cluster consist of a response
variable Y;; (1 = 1,2,...,m;j = 1,2,...,n;) and p covariates x;; = (T1ij,...,%pi;)"
associated with fixed effects and ¢ x 1 vector of covariates z;; associated with random
effects. For the twin-pairs data, each twin-pair is considered as a cluster so that the cluster
size n; = 2 for all clusters, and m is the total number of twin-pairs. Let Y; = (Yi1, ... Yi,, )T
and define x; and z; similarly. Given the ¢ x 1 vector of random effects, b, the generalized
additive mixed models takes the form

9(ms) = Bo + filaes) + - + fplap) + 210, (1)

where p; = E(Y; | b), g(-) is a strictly monotone and differentiable link function, f,(-)(r =
1,...,p) is a centered and twice-differentiable smooth function, and the random effects
b are assumed to be distributed as N(0, D).

Penalized Spline Estimation

We model the smooth function f,.(-) by using the thin plate regression splines of Wood
[19]. Taking a large number of knots (K.) to ensure the desired flexibility, we form a
basis matrix B, whose elements are thin plate regression spline basis functions B, (z;).
We then represent f,.(-) by a regression spline

fr = B.b: (2)
and prevent overfitting by imposing the restriction

B S < c (3)
for some nonnegative constant ¢, where 8, = (8,1,...,Brkr)? is a vector of basis coef-

ficients, and S, is a positive semi-definite penalty matrix. To ensure identifiability we
choose B, and f, such that

17B,3, = 0, (4)

where 1 is a vector of all 1s.

The Penalized Spline as a Mixed Model

Following Wood [25], we re-parameterize f,.(-) in terms of a fixed effects parameter vector
B.r and a random effects 3,z via a one-to-one transformation as

fr - BrFﬁrF + B?"R/BTR7 (5)

where g ~ N(0,7.I) with 7. = 1/\,, B,r are the columns of B, for which the penalty
matrix S, has zero eigenvalues, and B,r = B,U, /D! in which U, is the matrix con-
taining eigenvectors of S, corresponding to the strictly positive eigenvalues arranged in
descending order of magnitude (F,), and D, is the diagonal matrix containing E, on the
leading diagonal.



GAMDMs as Generalized Linear Mixed Models (GLMMs)
Substituting (5) in (1), we obtain

9(p) = BrBr + Brfr + Zb, (6)

where u = (p1, ..., um)", Br = (1, Bip, ..., Byr) is the fixed effects design matrix, B =
(Big, - - -, Bpr) is the random effects design matrix associated with the smooth functions,
Z = (21,...,2) is the typical random effects model matrix, 8r = (B0, f{p, ..., BLp)"
is a vector of fixed effect parameters, and fr = (Bg,...,B.r)" and b are independent
random effects with distributions g ~ N(0,A;) and b ~ N(0,D,) in which A, =
diag (mi1,...,7,I). The GAMM (6) can be written more compactly in the form of a

GLMM as

9(n) = XBr + Zu, (7)

where X = Bp, Z = (Bg,Z), w= (Bgr,b), and u ~ N(0, %, ) with

Y., =Cov(u) = [%T Zgy] .

Results of Twins Mortality Data Analysis

Table S1: Stratified comparisons of second and firstborn twins: adjusted ORs of peri-
natal death obtain from the Bayesian fit of the logistic additive mixed effects models

Variable adjusted OR Variance of
(95 % CI) random intercepts
Bayesian-UNIF Bayesian-HC Bayesian-1G Bayesian-UNIF Bayesian-HC Bayesian-1G

Birth weight, heavier in %
Heavier firstborn twin

> 25% 3.56 (2.38, 4.82) 3.42 (2.47, 4.70) 3.37 (2.30, 4.54) 3.9 3.5 2.1

15 to < 26% 2.05 (1.52, 2.60) 1.97 (1.58, 2.49) 1.94 (1.47, 2.41) 6.1 5.5 3.3

5 to < 15% 1.44 (1.16, 1.66) 1.39 (1.20, 1.62) 1.37 (1.12, 1.57) 4.9 4.4 2.6
Similar birth weight

within + 5% 1.32 (1.09, 1.45) 1.27 (1.13, 1.43) 1.25 (1.05, 1.38) 6.0 5.4 3.1
Heavier secondborn twin

5 to < 15% 1.24 (0.94, 1.44) 1.19 (0.97, 1.40) 1.17 (0.90, 1.35) 5.2 4.7 2.7

15 to < 25% 0.95 (0.69, 1.23) 0.91 (0.71, 1.20) 0.89 (0.66, 1.16) 6.2 5.6 3.3

> 25% 0.34 (0.24, 0.46) 0.33 (0.25, 0.45) 0.32 (0.23, 0.43) 3.6 3.3 2.0

¢ Birthweight difference in percentage comparing the heavier vs lighter twins.



