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An extended technical discussion of S-values and unconditional information can
be found in Greenland [1] and Greenland & Rafi [2]. Here we briefly cover several
technical topics mentioned in our main paper [3]: Different units for (scaling of)
the S-value besides base-2 logs (bits); the importance of uniformity (validity) of
the P-value for interpretation of the S-value; the combination of the S-value across
studies; and the relation of the S-value to othermeasures of statistical information
about a test hypothesis or model.
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1 | BACKGROUND

An extended technical discussion of S-values and unconditional information
can be found in Greenland [1] and Greenland & Rafi [2]. Here we briefly cover
several technical topics mentioned in our main paper [3]: Different units for
(scaling of) the S-value besides base-2 logs (bits); the importance of uniformity
(validity) of the P-value for interpretation of the S-value; the combination of
the S-value across studies; and the relation of the S-value to other measures
of statistical information about a test hypothesis or model.

2 | UNITS FOR THE S-VALUE

Other units for measuring information other than bits arise from different
choices for the base of the logarithms. For example, using natural (base-e)
logs, the S-value becomes se = − ln(p) = − log2 (p) ln(2) whose units are called“nats,” while using common (base-10) logs the S-value becomes s10 =− log10 (p)= − log2 (p) log10 (2) whose units are called hartleys, bans, or dits (decimal dig-
its). The ratio of one dit of information to one bit of information is log2 (10) =3.22 which is similar to the ratio of meters to feet, 3.28. Just as the choice of
meters vs. feet does not affect the concepts and methods surrounding length
measurement, so choice of dits vs. bits does not affect any of the concepts
or methods of information measurement. Bits are most commonly used in
communications engineering because the fundamental physical components
in electronic information storage are binary and thus their information capac-
ity is one bit. Natural logs are however more mathematically convenient and
thus more common in statistical theory (see below), although base-10 logs are
also seen.
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3 | UNIFORMITY OF THE P-VALUE
AND THE INFORMATION IN THE S-VALUE

The decision rule “reject H if p ≤ α” will reject H 100α% of the time un-
der sampling from a model M obeying H (i.e., the Type-1 error rate of
the test will be α ) provided the random variable P corresponding to p is
valid (uniform under the model M used to compute it), but not necessar-
ily otherwise [4]. This is one reason why frequentist writers reject invalid
P-values (such as posterior predictive P-values, which highly concentrate
around 0.50) and devote considerable technical coverage to uniform P-
values [4–6]. A valid P-value (“U-value”) translates into an exponentially
distributed S-value with a mean of 1 nat or log2 (e) = 1.443 bits where e
is the base of the natural logs.

Uniformity is also central to the “refutational information” interpreta-
tion of the S-value used here, for it is necessary to ensure that the P-value
p from which s is derived is in fact the percentile of the observed value
of the test statistic in the distribution of the statistic under M, thus mak-
ing small p surprising underM and making s the corresponding degree of
surprise. Because posterior predictive P-values do not translate into sam-
pling percentiles of the statistic under the hypothesis (in fact, they are
pulled toward 0.5 from the correct percentiles) [5, 6], the resulting nega-
tive log does not measure surprisal at the statistic given M, and so is not
a valid S-value in our terms.

For simplicity, we have assumed that at least an approximately valid P-
value can be derived for testingM. This is so in typical regression analyses
in health and medical sciences, but not always. To deal with exceptions,
P-values are often said to be “conservatively valid” for testingMwhen un-
derM they stochastically dominate a unit-uniform distribution, i.e., under
M the probability that P exceeds a given p is at least p, and for some p ex-
ceeds p. Typical exact P-values from discrete data are conservatively valid
but approach uniformity with increasing sample size. In cases for which
we can only deduce that P is conservatively valid (as when its observed
value p is an upper bound rather than a direct tail probability), we would
interpret its corresponding S-value as conservatively valid in the sense of
representing the minimum information againstM supplied by the test.

The coin-toss interpretation we have used to physically gauge this
information assumes that the only alternative to fairness is in the direc-
tion of loading for heads. The S-value it produces thus corresponds to
a P-value for the 1-sided hypothesis Pr(heads)≤ 1/2; nonetheless, this in-
terpretation applies even if the original observed P-value p was 2-sided.
This translation from a 2-sided P-value to a 1-sided S-value parallels the
transformation of P-values into 1-sided sigmas (Z-scores) in physics, in
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which for example a P-value of 0.05 from a two-sided test would become
a sigma of 1.645, the upper one-sided 5% cutoff for a standard-normal
deviate [7].

4 | COMBINATION OF S-VALUES ACROSS STUDIES

Preprints of our article referred to the S-value as “additive” over indepen-
dent sources, which is incorrect insofar as the combined refutational in-
formation from independent tests of the same model M is a subadditive
function of the separate S-values; only the combination of the latter into
a summary test statistic is additive. More precisely, suppose we have K
studies, each contributing an independent valid S-value Sk for M. Under
M, each Sk has an expected value of 1 nat, which can be viewed as the
expected “noise” contribution to the S-value (Good [8, 9] dealt with this
factor bywhat in our case reduces to subtracting 1 nat from each surprisal,
which however creates problematic negative values when s < 1 nat; we
have instead chosen to follow the subsequent theoretical literature and
not do so). The sum S+ =∑

k Sk will thus have an expectation of K “noise”
nats under M. Furthermore, the distribution of 2S+ will be χ2 on 2K de-
grees of freedom [10]; hence the summary S-value S& derived from the
sum S+ will be the negative log of the P-value from comparing 2S+ to a
2K df χ2 distribution. Under M this summary-χ2 S& has an expectation
of 1 nat and thus will on average be K - 1 nats smaller than S+, with even
larger discrepancies under violations ofM that the test is sensitive to.

More generally, if the test modelMk varies across studies, the S - sum-
mation test just given is valid for testing the conjunction (intersection) hy-
pothesis M& = M1& · · · &MK , but is rarely optimal because it makes no
use of homogeneity or other relations among the models. In particular,
the test remains valid when as usual each study modelMk incorporates ashared target or focal hypothesisH across studies (e.g., no association of a
given treatment and disease), combined with different sets of background
assumptions Ak (e.g., due to differences in study designs), so that Mk =
H&Ak andM& = H&A1& · · ·&AK = H&A&. When however a homogene-
ity assumption is correct, this general test will have lower power (sensitiv-
ity) for violations of H given the background A& than the usual summary
tests (which use homogeneity in deriving the study-specific contributions
to their summary statistics). On the other hand, those usual tests can have
lower power if homogeneity is very wrong. In any case, the S-values from
the two tests can differ considerably due to the additional (and possibly
incorrect) homogeneity information used in the usual tests.

Some insight into these results may follow from reviewing the tra-
ditional parallel procedure for combining Z-scores Zk (e.g., standardized
residuals) by squaring and summing them. The resulting sum of squares∑
k Zk 2 has a K df χ2 distribution with expectation K if no cross-k infor-
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mation is used to compute the Zk . More generally however the df are
reduced by the number of cross-study sharp constraints used. For exam-
ple, if H is a hypothesis that a mean difference δk is 0, the test using the
assumption that the δk are constant across studies imposes K - 1 con-
straints (δ1 = · · · = δK ) to derive the Zk , and so will have only 1 df instead
of K df; this reduction in df produces considerably more power if the as-
sumption is correct, but not necessarily otherwise. See Greenland and
Rafi [2] for details and examples.

5 | OTHER MEASURES OF STATISTICAL
INFORMATION ABOUT A TEST HYPOTHESIS OR MODEL

A common measure for evaluating a hypothesis or model restriction H
under background assumptions or unrestricted model A is the maximum-
likelihood ratio (MLR), which is the value of the likelihood function at its
maximum under A alone, divided by its (restricted) maximum when the
test hypothesis H is additionally imposed [11, 12]. The MLR defined this
way is always above 1; it is however sometimes confused with the poste-
rior odds against the tested value H given A, which it equals only under
very special (and usually unrealistic) conditions. The MLR does however
show the most extreme increase in posterior odds againstH that the data
could produce given A. The corresponding information measure parallel-
ing the S-value is the deviance difference or likelihood-ratio (LR) statistic
for H given A, 2 ln(MLR ), which is itself a test statistic for H given A. The
change in the Akaike Information Criterion (without small-sample adjust-
ment) from adding H to the background model is 2 ln(MLR ) − 2d where
d is the dimension (degrees of freedom) of H [11, 13].

Now consider a sharp constraint hypothesis H with a P-value less
than 1/e = 0.368. Bayarri & Berger [14] and Sellke et al. [15] show that
b = −e ·p · ln(p) = e ·p · se is a sharp lower bound on the Bayes factor forHunder A, where A now includes strong restrictions on the alternatives to
H. (A Bayes factor is the ratio of posterior data probabilities under H and
an alternative, given A.) Thus, given A and the data, b is a lower bound on
the reduction in odds for H given A in moving from a prior to a posterior,
and 1/b is an upper bound on the increase in odds against H given A. Sim-
ple numeric examples show that the latter bound is much lower than the
MLR. The strength of the restrictions added to A is indicated for example
by the fact that for p = 0.05 the MLR in Table 1 of our main paper [3] is
6.83, while 1/b is only 2.46. Sellke at al. [15] also discuss how 1

1+ 1
b

is the
Type-1 error rate for a particular type of conditional decision rule.

Grünwald et al. [16] introduce a general concept they call an S-test
statistic (where “S” stands for “safe”) for H given A, defined as any ran-
dom variable S satisfying EM (S ) ≤ 1 under any modelM obeyingH and A.
They also call this S an “S-value”. As noted above, our binary S-value S2 =
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− log2 (P ) can be redefined using natural logs and thus rescaled to units ofnats instead of units of bits, via Se = − ln(P ) = − log2 (P ) ln(2). Se is thenan example of their S-value, since EM (Se ) ≤ 1 when the random P-value
P is valid or conservatively valid (uniform or dominated by a uniform ran-
dom variable underM); it is also an example of a betting score [17] (hence
“S” can also be taken as “information score”). Grünwald et al. [16] discuss
other S-values, including those based on Bayes factors.

Finally, consider a 1-dimensional continuous parameter µ with test
hypotheses H of the form µ ≤ µ0 and a specified alternative µ ≥ µ1 (or µ= µ0 with alternative µ = µ1) where µ0 < µ1. In this context, yet another
S-word, “severity”, has been used to refer to the P-value p (µ ≥ µ1) for
µ ≥ µ1 (the lower tail of the test statistic m - µ1 for a 1-sided test of µ
= µ1 when using the estimate m of µ), which decreases as µ1 increases;
see p. 345 and Fig, 5.5 of Mayo [18]. Since the complement p (µ ≤ µ1) =1 - p (µ ≥ µ0) is the P-value for µ ≤ µ1, we find that (whatever the base)
the corresponding S-value function s (µ ≤ µ1) = − log(p (µ ≤ µ1) measur-
ing the information against µ ≤ µ1 increases as p (µ ≥ µ1) increases; thus
p (µ ≥ µ1) varies directly with the information s (µ ≤ µ1) against µ ≤ µ1(the case with alternative µ1 < µ0 is handled symmetrically). This so-called
“severity” of the test of the original H (µ ≤ µ0) is not in fact a function of
µ0 and so is identical for all µ0. Furthermore, it incorporates no informa-
tion about background assumptions (e.g., whether treatment assignment
was blinded) which bear heavily on practical notions of severity. We thus
conclude that it is misleading to label p (µ ≥ µ1) as a severity measure, and
it instead should be recognized and treated as the P-value function it is.
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