
Appendix I Poisson Model

It is well known that a Cox model can fitted within the GLM framework us-
ing a Poisson model (1; 2) and such a model without covariates gives parame-
ter estimates that are identical to the contribution of each unique time to the
Nelson-Aalen estimate of the cumulative hazard. However, the approach is not
a computationally efficient way to estimate such a model. Here we show that
Poisson regression with appropriate weights is identical to Pohar Perme esti-
mate. We are not advocating such an approach due computational reasons,
but include details to demonstrate the link between the parametric and non-
parametric estimators.

In order to fit the Poisson model the time-scale needs to be split at the
unique failure times. This leads to each individual having as many rows of data
that they are at risk for. Let dij be the event indicator for the ith subject in the
jth time interval with tj the time at the end of the interval. Note that dij will
only take the value 1 for the final interval and only if the subject had an event.
Let yj denote the time at risk for the jth interval. In addition, define weights
w∗ij as,

w∗ij =
1

S∗ij(tj)

and the weighted mean hazard defined as in equation (4).
A Poisson model can be fitted with outcome dij , weights w∗ij and offset

yj h̄
∗(tj), an identity link and indicator variables for each unique event time.

Note that the offset gives the (weighted) expected number of deaths at the jth

event time and yj is the time from the previous event time (or from zero for
the first event). A parameter, λj is estimated for each of the J unique death
times. The contribution to the likelihood of the jth interval is the sum over the
individuals at risk at time tj .

lnLj =
∑

i∈R(tj)

diw
∗
ij ln

[
h̄∗(tj) + λj

]
− w∗ijλjyj

where h̄∗(tj) is defined in equation (4).
To obtain the maximum likelihood estimate, differentiate with respect to λj ,

set to zero and solve for λj .∑
i∈R(tj)

dijw
∗
ij

h̄∗(tj) + λj
−

∑
i∈R(tj)

w∗ijyj = 0

∑
i∈R(tj)

dijw
∗
ij = yj(h̄

∗(tj) + λj)
∑

i∈R(tj)

w∗ij

∑
i∈R(tj)

dijw
∗
ij∑

i∈R(tj)
w∗ij

− h̄∗(tj)yj = yjλj
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Substituting in the RHS of equation (??) for h̄∗(tj) gives

∑
i∈R(tj)

dijw
∗
ij∑

i∈R(tj)
w∗ij

−

∑
i∈R(tj)

w∗ijh
∗(tj)∑

i∈R(tj)

w∗ij
= yjλj

The LHS is equivalent to the contribution of the jth event time for the change
in the cumulative excess hazard for the Pohar Perme estimator.

The Stata code below demonstrates the equivalence using the first simulated
dataset from the simulation study.

// Use first 250 observations of first simulated dataset

use scenario2_1 if _n<=250, clear

// declare survival data

stset t,f(dead) id(id) exit(time 10.5)

// Pohar Perme estimate

// Use fh (Fleming-Harrington) option for equivalence to poisson approach //

stpp R_pp using lifetab.dta, agediag(agediag) datediag(diagdate) ///

pmother(sex) fh

// split time scale at failure times

stsplit, at(failures) riskset(interval)

sort id (_t)

// attained age and calendar year

gen _year = year(diagdate + _t0*365.24)

gen _age = min(floor(agediag + _t0),99)

// merge in expected rates

merge m:1 _year sex _age using lifetab, keep(match master)

// time at risk

gen double y = _t-_t0

// expected survival for each individal

bysort id (_t): gen double expsurv = exp(-sum(rate*y))

bysort _t _d: gen lastobs = _n==_N & _d==1

// estimate marginal expected rates

gen double wt = 1/expsurv

bysort _t: egen double Y_w = total(wt)

bysort _t: egen double hbar_num = total(rate/expsurv)

gen double hbar = hbar_num/Y_w
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// expected deaths

gen double d_star = hbar*y

// Poisson Model

glm _d ibn.interval [iweight=wt], family(poisson) link(identity) nocons offset(d_star) vce(cluster id)

// predict contribution of jth interval and sum over intervals

sort _t lastobs

predictnl double dLambda = sum(predict(xb nooffset)) if lastobs, ci(dLambda_lci dLambda_uci)

gen double R_pois = exp(-(dLambda))

gen double R_pois_lci = exp(-(dLambda_uci))

gen double R_pois_uci = exp(-(dLambda_lci))

// Check agreement between Pohar Perme and model based estimate.

assert reldif(R_pois,R_pp)<1e-08 if lastobs

assert reldif(R_pois_lci,R_pp_lci)<1e-04 if lastobs

assert reldif(R_pois_uci,R_pp_uci)<1e-04 if lastobs

We stress that we do not advocate this as a sensible way to estimate marginal
relative survival using the Pohar Perme method, but want to illustrate the
relationship between the methods. The code is slow on 250 observations and
would be unfeasible when there are tens of thousands of observations.
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