Supplementary Data
Materials and Methods
Jaro-Winkler similarity. The Jaro-Winkler similarity[1] was built from the Jaro similarity as follows:
	
	


where  is the length of common prefix at the start of the string up to a maximum of four characters and  is a constant scaling factor for how much the score is adjusted upwards for having common prefixes.p  should not exceed , otherwise the distance can become larger than 1. The standard value for this constant in Winkler’s work[2] is .
The Jaro similarity[3] is defined as:
	
	


where  is the length of the string,  is the number of matching characters (characters that are the same) that are in common within half the length of the longer string, and  is the number of transpositions (two adjacent characters that are swapped in the two strings, such as ‘de’ and ‘ed’). 

Binary similarity. The Binary similarity (i.e. extract agreement) is defined as:
	
	


An example is shown in Table 2 where the first and the second row correspond to the vector  and  respectively and the third row is the value of the similarity vector .

K-means clustering. K-means clustering[4] is an iterative algorithm that partitions n observations into k clusters in which each observation belongs to the cluster with the nearest mean (or centroid). At each step, it calculates the centroids of the k clusters, and reassigns each data point to the nearest cluster (i.e. the one with closest centroid). K-means is fast and flexible.

Bagged K-means clustering. Bootstrap Aggregating (Bagged)[5] is an ensemble method for clustering. The idea is to stabilize K-means, which is a stochastic algorithm and may not return the same clusters each time it is run, by repeatedly running it and combining the results by hierarchical clustering.

Classification Tree (CT). CART (Classification and Regression Tree)[6] can build classification (categorical outcome) or regression (continuous outcome) models represented as a binary tree. At each node, the record pairs are split into two subsets (nodes) based on thresholding the value of the identifiers describing them (here, the similarity score for each identifier). GINI impurity measure is used for selecting identifiers and best threshold[7]. Once a tree is built, pruning is applied to select a tree size that minimizes the cross-validated error, in order to reduce the overfitting and complexity.

Bagged trees. Bootstrap aggregating (Bagging)[8] is an ensemble algorithm. Used with classification trees, it improves the stability of a model by reducing variance and thus avoiding overfitting. The models are built independently and parallelly. The predictions from these models are aggregate and make a majority voting to determine the final class.

AdaBoost. Boosting is an ensemble technique that attempts to create a strong model from a number of weak models, typically classification trees. AdaBoost (Adaptive Boosting)[9] is one of the most widely used boosting algorithm. AdaBoost is a sequential ensemble where each model is built based on correcting the misclassifications of previous model, and it involves the weighted majority voting of sequential models. Each sequential model is built by assigning greater weights to misclassified data points of the previous model.

Random Forest (RF). The RF algorithm[10] is also an ensemble of unpruned classification trees. It is an improvement over bagged classification trees. Two components of randomness are introduced into the construction of the individual tree: each tree grows on an independent dataset, which is a bootstrap sample from the training data; at each node, a few identifiers are randomly selected out of all identifiers, and the best split is determined among these selected identifiers only. Prediction is made by aggregating (majority vote for classification) the predictions of the ensemble.

Support Vector Machine (SVM). A SVM[11] separate positive and negative examples with a hyperplane, constructed in such a way as to have maximum margin (i.e. distance from the training points to the hyperplane), since the larger the margin, the lower the generalization error of the model[12]. Support vectors are the data points that lie closest to the hyperplane. The classification of new data is based on which side of the hyperplane the data point falls. SVMs can perform non-linear classification by transforming the data using a kernel function such as Gaussian Radial Basis Function (RBF), which is commonly used in SVM classification. 

Neural Network (NNET) Single-layer neural network[13] can be viewed as three layers of connected nodes (called neurons or units). The input layer contains the nodes representing identifiers describing the data (here, the similarities  for each identifier). In the case of a binary classification (here, matches vs. non-matches), the output layer contains a single node. A ’hidden’ layer between input and output layers contains a number of nodes, to be tuned during training. The layer is known as “hidden”, since it is not visible as a network output. Every node in the hidden layer is connected to each node in input layer and each node in output layer. Each connection has an associated weight, which is learned during training. Each node applies an activation function to the weighted sum of its inputs plus a constant (called the bias). The activation function (typically a logistic/sigmoid function) introduces non-linearities. The output of the network is interpreted as the probability (between 0 and 1) of belonging to the positive class (here, matches). A threshold of 0.5 is used to separate the two classes.

The record pair comparisons and PRL were implemented using the RecordLinkage R package[14]. The e1071[15], caret[16], mice[17], ada[18], ipred[19], randomForest[20], nnet[21] packages in R were used for the implementation of the machine learning methods.

Hybrid record linkage process - Step 2  
In the 5-fold cross validation, all record pairs were partitioned into five equal size groups. Of the five groups, a single group (dataset B) was retained for comparing the predictive performance of the three linkage methods. The remaining four groups (dataset A) were used to select an optimal ML algorithm. 
For each round of cross validation, we performed the following steps: 
(1) we applied blocking on dataset A to reduce the number of possible record pair comparisons. Missing data in blocking variables (BRCA1, BRCA2, GENDER and Yob) were tolerated here. After blocking, missing data was imputed. 
(2) we randomly partitioned dataset A into two sets: 60% of record pairs were used as training dataset (Atrain) on which we trained ML models, and the remaining 40% were used as a test dataset (Atest) on which we evaluated the predictive performance of the trained ML models. We employed six broadly used ML algorithms (CT, Bagged trees, AdaBoost, RF, SVM and NNET). In order to determine the optimal parameters for each of these ML algorithms, we carried out an inner 5-fold cross validation on each Atrain when building a ML model. We also built a naive baseline Bernoulli model on which other ML models can be compared to. We calculated the average performances of 6 ML algorithms on dataset A from five rounds and chose an optimal ML algorithm.
(3) The chosen ML model built from dataset A was used when applying ML and PRL+ML linkage methods on dataset B. We set the PRL score thresholds varying from 0.6 to 0.8 in the PRL and PRL+ML methods, since the number of FP and FN was very sensitive to the threshold. Finally, we compared the average predictive performance of three linkage methods on dataset B from five rounds and chose the method that best meets our needs. As the goal of our study is to minimize the number of FN, we used recall as a selection criterion.

Results
Missing rate of matching variables
Before the imputation of missing data, we checked the missing rate for the six matching variables that would be used in ML. CTR missing rate = 0, NUMFAM missing rate = 0.048%, SUJID missing rate = 0.063%, MUT_HGVS missing rate = 2.5%, Mob missing rate = 0.14% and Dob missing rate = 0.14%. 
Unsupervised classification model
We used K-means and Bagged clustering to separate the record pairs into two clusters: matches and non-matches. Their performances are reported on Table S3. Although the recall was quite satisfying, both of them showed too many FP (almost half of the total record pairs) inducing a low precision and F-measure. Hence we did not proceed further with unsupervised classification.

	
	True match status

	
	Non-Matches
	Matches 

	
Linkage
	Non-Matches
	TN (True Negative) 
	FN (False Negative)

	
	Matches
	FP (False Positive) 
	TP (True Positive)


[bookmark: _Ref521503484]Table S1. Confusion matrix. The performance metrics are calculated from the confusion matrix.


	Score range
	Frequency

	[0,0.05]
	184865

	(0.05,1]
	278469

	(0.1,0.15]
	3568224

	(0.15,0.2]
	5012178

	(0.2,0.25]
	3502947

	(0.25,0.3]
	1415677

	(0.3,0.35]
	833321

	(0.35,0.4]
	470950

	(0.4,0.45]
	210737

	(0.45,0.5]
	142424

	(0.5,0.55]
	25613

	(0.55,0.6]
	8502

	(0.6,0.65]
	1157

	(0.65,0.7]
	253

	(0.7,0.75]
	44

	(0.75,0.8]
	56

	(0.8,0.85]
	332

	(0.85,0.9]
	16

	(0.9,0.95]
	55

	(0.95,1]
	751


[bookmark: _Ref521504467]Table S2. Score distribution for all record pairs comparisons between GEMO and GENEPSO in dataset 1. The score is between 0 and 1.






	Dataset
	N. record pairs
	Dataset
	N. record pairs

	A1

	87618
	A1train
	52571

	
	
	A1test
	35047

	A2
	85351
	A2train
	51211

	
	
	A2test
	34140

	A3
	83657
	A3train
	50195

	
	
	A3test
	33462

	A4
	87020
	A4train
	52212

	
	
	A4test
	34808

	A5
	86750
	A5train
	52050

	
	
	A5test
	34700


Table S3. Size of each dataset A after blocking. Each dataset A was randomly patitioned into two sets: the training dataset (60%) Atrain and the test dataset (40%) Atest.
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	[bookmark: page15][bookmark: page16]A. Example of  4 matches identified by PRL:

	
	BRCA1
	BRCA2
	CTR
	GENDER
	NUMFAM
	SUJID
	MUT_HGVS
	Yob
	Mob
	Dob
	Weight

	pair 1:
	
	
	
	
	
	
	
	
	
	
	

	GEMO
	1
	NA
	01
	2
	23019
	0003
	c.3947_3950del
	1992
	06
	02
	0.7804626

	GENEPSO
	1
	NA
	01
	2
	23019
	0003
	c.3947_3950del
	2017
	10
	02
	

	pair 2:
	
	
	
	
	
	
	
	
	
	
	

	GEMO
	NA
	1
	01
	2
	23636
	0001
	c.275_278dup
	1993
	08
	18
	0.6910272

	GENEPSO
	NA
	1
	01
	2
	23636
	0001
	c.275-278dup
	2017
	07
	03
	

	pair 3:
	
	
	
	
	
	
	
	
	
	
	

	GEMO
	1
	NA
	01
	2
	7790
	0003
	c.3841C>T
	1987
	02
	03
	0.7428885

	GENEPSO
	1
	NA
	01
	2
	07790
	0003
	c.3481C>T
	1987
	02
	03
	

	pair 4:
	
	
	
	
	
	
	
	
	
	
	

	GEMO
	NA
	1
	01
	2
	21532
	0001
	c.9672dup
	1963
	06
	13
	0.6971889

	GENEPSO
	NA
	1
	01
	2
	21532
	0001
	c.9672dup
	2017
	07
	03
	

	

	B. Example of 2 matches identified by RF model:

	
	BRCA1
	BRCA2
	CTR
	GENDER
	NUMFAM
	SUJID
	MUT_HGVS
	Yob
	Mob
	Dob 
	

	pair 1’:
	
	
	
	
	
	
	
	
	
	
	

	GEMO
	1
	NA
	22
	2
	N05012
	IV-5
	c.4868C>G
	1983
	11
	07
	

	GENEPSO
	1
	0
	22
	2
	05012
	4001
	c.4868C>G
	1983
	11
	07
	

	pair 2’:
	
	
	
	
	
	
	
	
	
	
	

	GEMO
	NA
	1
	58
	1
	LR09045
	3002
	c.6079dup
	1943
	05
	10
	

	GENEPSO
	0
	1
	22
	1
	09045
	3001
	c.6079dup
	1943
	05
	10
	


[bookmark: _Ref522198095]Table S4. List of matches identified by either PRL or RF. A. Example of 4 matches identified by PRL. B. Example of 2 matches identified by RF model. The bold text represents the difference between two records. There are ten shared identifiers between GEMO and GENEPSO: BRCA1 mutational status (BRCA1), BRCA2 mutational status (BRCA2), mutation description using the HGVS nomenclature (MUT_HGVS), gender (GENDER), consultation center number (CTR), family number of the consultation (NUMFAM), individual number in family (SUJID), year of birth (Yob), month of birth (Mob) and day of birth (Dob).


	K-means (k=2)
	Reference
	
	Bagged K-means
	Reference

	Prediction
	0
	1
	
	Prediction
	0
	1

	0
	7543508
	70
	
	0
	7688718
	3

	1
	8108430
	1187
	
	1
	7963220
	1254



	Model
	Balanced Accuracy
	Recall
	Precision
	F-measure

	K-means
	0.71313
	0.94431
	1.464e-04
	2.927e-04

	Bagged K-means 
	0.74442
	0.99761
	1.574e-04
	3.148e-04


[bookmark: _Ref522199972]Table S5. Performance of the unsupervised machine learning models. 
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