RESEARCH

з 4 **Л**

2

Appendix: On Clinical Trial Fragility Due to Patients Lost to Follow Up

⁸Benjamin R. Baer^{1*}, Stephen E. Fremes², Mario Gaudino³, Mary Charlson⁴ and Martin T. Wells^{1,4}

10 Extended examples

 $_{11} {\rm In}$ this section, we explore alternative visualizations $_{12} {\rm of}$ the three example clinical trials which result from $_{13} {\rm alternative}$ choices.

14

15Effect size focused examples

¹⁶We consider alternative visualizations of each clinical ¹⁷trial example in Section 3. Instead of the tile color ¹⁸displaying whether the augmented data (with the ob-¹⁹served and lost patients) is statistically significant, the ²⁰tile color now shows the effect size of the augmented ²¹data. The results are shown in Figure 1, Figure 2, and ²²Figure 3.

23

36

²⁴Alternative prior choices

²⁵We explore the posterior distribution of the event ²⁶counts among the lost patients $X_{\ell} \mid X_o$ when the con-²⁷ditional prior distribution $p_{\ell} \mid p_o$ in Equation 4 is cho-²⁸sen to be biased towards 0 or biased towards 1/2. We ²⁹will see that these biases are reflected in the posterior ³⁰distribution, because the conditional prior distribution ³¹fully controls the transfer of information from the ob-³²served patients to the lost patients.

³³ First, let us consider the former case and take³⁴

³⁵ $p_{\ell} \mid p_o \sim \text{Beta}(sp_o/2 + 1, s(1 - p_o/2) + 1).$

Note that this is the original definition of the condi-²⁶ tional prior but with p_o replaced by $p_o/2$. The result-²⁷ ing figures for each of the three considered clinical trial²⁸ examples is below. The results are shown in Figure 4,²⁹ Figure 5, and Figure 6. In all cases, the the posterior³⁰ distributions is biased towards 0 for both arms. ³¹ Second, let us consider the latter case and take ³²

25

3

6

8

$$p_{\ell} \mid p_o \sim \text{Beta}(s(p_o/2+1/4)+1, s(1-(p_o/2+1/4))+1).^{34}$$

Note that this is the original definition of the condi-³⁶ tional prior but with p_o replaced by $p_o/2 + 1/4$. The³⁷ resulting figures for each of the three considered clin-³⁸ ical trial examples is below. The results are shown in³⁹

^{*}Correspondence: brb225@cornell.edu

 $^{^1}$ Department of Statistics and Data Science, Cornell University, Ithaca, $^{38}_{\rm NY,\ US}$

 $^{^{\}rm 39}{\rm Full}$ list of author information is available at the end of the article

¹⁷ Figure 7, Figure 8, and Figure 9. In all cases, the the
¹⁸ posterior distributions is biased towards 1/2 for both
¹⁹ arms.

Author details

²¹ Department of Statistics and Data Science, Cornell University, Ithaca,
²²NY, US. ² Schulich Heart Centre, Sunnybrook Health Science Centre,
²³University of Toronto, Toronto,ON, CA. ³Department of Cardiothoracic
²⁴ Surgery, Weill Cornell Medicine, New York, NY, US. ⁴Department of
²⁴ Medicine, Weill Cornell Medicine, Weill Cornell Medicine, New York, NY,
²⁵US.

Figure 3 Information for each possible outcome for the lost patients in Table 4. The posterior probability is shown via the border coloring, and the effect size of the augmented data is shown with the tile color.

1.00 --pump LTFU Incidence ຣົ _{0.25} 0.0 0.00 0.25 0.50 pump LTFU Incidence Off Statistical Posterior probability p > 0.05 p < 0.05 significance 0.130 0.065

Figure 4 Information for each possible outcome for the lost patients in Table 2. The posterior probability is shown via the border coloring, and the effect size of the augmented data is shown with the tile color. The lost incidence prior is chosen to be biased towards 0.

Figure 6 Information for each possible outcome for the lost
patients in Table 4. The posterior probability is shown via the
border coloring, and the effect size of the augmented data is
shown with the tile color. The lost incidence prior is chosen to
be biased towards 0.

Figure 8 Information for each possible outcome for the lost patients in Table 3. The posterior probability is shown via the border coloring, and the effect size of the augmented data is shown with the tile color. The lost incidence prior is chosen to be biased towards 1/2.

