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A Pseudocodes for BARTA and BARTS

BARTA Adaptive rule for treatment allocation.

if π (θ0 + δ ≥ θ∨) < ε then
I0,0 ← 0;

else
I0,0 ← 1;

end
for k ← 1 to K (experimental treatment arms) do

if π (θk = θ∨) < ε then
Ik,0 ← 0;

else
Ik,0 ← 1;

end
end
I0 ← (I0,0, I1,0, ..., IK,0);
L0(θ)← 1 ;
n← 0 ;
N(0)← 0 ;
while N(n) < Nmax do

n← n+ 1;
if Ir(n),n−1 = 0 then

N(n)← N(n− 1);
In ← In−1;
Ln(θ)← Ln−1(θ);

else
(in this case Ir(n),n−1 = 1);
N(n)← N(n− 1) + 1;
AN(n) ← r(n);
Ln(θ)← Ln−1(θ)× θ

YN(n)

r(n)

(
1− θr(n)

)1−YN(n);
for k ← 1 to K (experimental treatment arms) do

if Pπ
(
θk = θ∨

∣∣Dn

)
< ε then

Ik,n ← 0;
else

Ik,n ← 1;
end

end
if Pπ

(
θ0 + δ ≥ θ∨

∣∣Dn

)
< ε then

I0,n ← 0;
else

I0,n ← 1;
end

end
end
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BARTS Adaptive rule for treatment allocation and selection.

if π (θ0 + δ ≥ θ∨) < ε then
I0,0 ← 0;

else
I0,0 ← 1;

end
for k ← 1 to K (experimental treatment arms) do

if π (θk = θ∨) < ε then
Ik,0 ← 0;

else
Ik,0 ← 1;

end
end
I0 ← (I0,0, I1,0, ..., IK,0);
T← {0, 1, ...,K};
N(0)← 0;
L0(θ)← 1;
n← 0 ;
while N(n) < Nmax do

n← n+ 1;
if Ir(n),n−1 = 0 then

N(n)← N(n− 1);
In ← In−1;
Ln(θ)← Ln−1(θ) ;

else
in this case (r(n) ∈ T) and (Ir(n),n−1 = 1);
N(n)← N(n− 1) + 1;
AN(n) ← r(n);
Ln(θ)← Ln−1(θ)× θ

YN(n)

r(n)

(
1− θr(n)

)1−YN(n) ;
for k ∈ T \ {0}(experimental treatment arms) do

if Pπ
(
θk ≥ θlow

∣∣Dn

)
< ε1 or Pπ

(
θk = max

`∈T
θ`
∣∣Dn

)
< ε2 then

T← T \ {k};
Ik,n ← 0 ;
nk,last ← n;

else if Pπ
(
θk = max

`∈T
θ`
∣∣Dn

)
< ε then

Ik,n ← 0;
end
else

Ik,n ← 1;
end

end
if 0 ∈ T then

if Pπ
(
θ0 + δ ≥ θlow

∣∣Dn

)
< ε1 or Pπ

(
θ0 + δ ≥ max

`∈T
θ`
∣∣Dn

)
< ε2 then

T← T \ {0};
I0,n ← 0;
n0,last ← n;

else if Pπ
(
θ0 + δ ≥ max

`∈T
θ`|Dn

)
< ε then

I0,n ← 0;
end
else

I0,n ← 1;
end

end
end
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B Illustrations of the methods by using simulation exper-
iments

Here we illustrate the application of the methods for treatment allocation (BARTA) and for
treatment selection (BARTS ) by performing a number of simulation experiments from hy-
pothesized probability distributions Q. For this, we consider different choices for the "true"
parameter values θ = (θ0, θ1, . . . , θK), varying also the values of the threshold parameters δ, ε
and ε2, and of the maximal trial size Nmax. For simplicity, and since we do not aim at modeling
any contextual real data, we let θlow = 0 and ε1 = 0 in all simulations.

Before entering the more detailed discussion of the simulation experiments, we consider briefly
the choice of the prior distribution for the parameter θ = (θ0,θ1, . . . ,θK). In these experiments
we are using systematically independent Uniform(0,1)-priors for all coordinates θk, correspond-
ing to the hyperparameter values αk = βk = 1 of the Beta-distributions. This choice is not
intended as a practical guideline, nor to be representative of choices that would be commonly
made in real data situations. Instead, it is thought to be appropriate to be used as an illustra-
tion of the workings of BARTA and BARTS, as all essential information for running the trial
then comes from the registered outcome data from the trial itself. Particularly on the treatment
used as the control arm, there is usually a fair amount of background information from earlier
experiments for specifying a more informative prior; for the relevant literature on this topic
see, e.g., Spiegelhalter et al. [5], Thall & Simon [8], Spiegelhalter et al. [4] and Neuenschwander
et al. [3].

A pair (αk, βk) of hyperparameters of the Beta-distribution is commonly thought to represent
prior information equivalent to αk successes and βk failures from a treatment arm before initi-
ating the trial. If the selected values αk and βk for some particular treatment arm k are such
that their sum αk + βk is larger than that of the others, say αl + βl, it may be a good idea to
postpone the application of BARTA on arm k from the start of the trial, and use it to allocate
the first participants to those other arms l until the sum αl+βl+Sl(i)+Fl(i) reaches the level
of αk + βk. Intuitively speaking, treatments are then compared to each other only after the
joint posterior is based in the same number of (pseudo)observations from all arms.

Remark. Postulating prior independence of the different treatment effects, although very
convenient from practical and computational perspectives, is unlikely to correspond exactly to
honest initial beliefs held at the time a trial is designed. For example, in most trials involving
binary outcomes, it would be natural to assume that θk corresponding to an experimental
treatment would not be widely different from θ0 corresponding to the control. In a more
elaborate modeling, such dependence could perhaps be accounted for by employing a suitable
copula model, e.g., Meester & Mackay [2]. The prior dependence is then inherited by the
posterior; however, its influence on the conclusions that can be drawn from the trial is likely
to diminish considerably as more empirical outcome data become available.

B.1 Simulation studies with a 2-arm trial: Experiment 1

Our first simulation experiment mimics the setting of the two-arm trial described in Villar
et al. [9], Section 5.1. In this comparison of a single experimental treatment to a control, the
hypothesis H0 : θ1 ≤ θ0 was tested against the alternative H1 : θ1 > θ0 by using Fisher’s exact
test at the significance level of α = 0.05 for Type 1 error. Two alternative parameter settings
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were considered in the simulations leading to the numerical results shown in Table 5 of Villar
et al. [9], with Type 1 error rate computed at parameter values θ0 = θ1 = 0.3, henceforth
denoted by Qnull, and the power of rejecting H0 computed at θ0 = 0.3, θ1 = 0.5, denoted by
Qalt. The simulations and the tests were based on fixed trial size Nmax = 148.

In the present approach, instead of first collecting all planned outcome data and then performing
a test at a given level of significance, the trial would be run in an adaptive manner, continuously
updating the posterior probabilities specified in BARTA and/or BARTS, and then proceeding
in an inductive manner according to these rules.

B.1.1 Monitoring the operation of BARTA in Experiment 1

We considered three different settings of the design parameters for BARTA: (a) δ = 0.1, ε = 0.1,
(b) δ = 0.1, ε = 0.05, and (c) δ = 0.05, ε = 0.2. Note that larger values for δ and smaller values
for ε correspond to a higher degree of conservatism towards moving a treatment arm from
active to dormant state, and conversely. The choice (b) is therefore more conservative than (a),
while (c) is more liberal.

As an illustration of the workings of BARTA, we performed an experiment emulating a real
trial with maximal size Nmax = 500, using a single realization generated from Qalt and apply-
ing BARTA for treatment allocation with thresholds (a). For this, we considered the values
of the list index n at which a new patient was allocated to either of the two treatments,
i.e., N(n) − N(n − 1) = 1, thereby skipping an index if it corresponds to an arm in the
dormant state. For such values of n and until N(n) = 500, we monitored in Figure S1 the
development of the posterior probabilities Pπ(θ0 + δ ≥ θ∨|Dn) = Pπ(θ0 + δ ≥ θ1|Dn) and
Pπ(θ1 = θ∨|Dn) = Pπ(θ1 ≥ θ0|Dn), of the posterior expectations Eπ(θ0|Dn) and Eπ(θ1|Dn),
and of the activity indicators I0,n and I1,n. Note that these functions depend only on the
corresponding "condensed" simulated data {D∗i , 1 ≤ i ≤ 500}.

According to BARTA design (a), the control arm is in dormant state for patient i if Pπ(θ0+0.1 ≥
θ1|D∗i ) < 0.1. The values of i for which this was the case in the considered simulation are
shown in Figure S1 in grey color. For such i, no new patients were allocated to the control
treatment, and therefore the corresponding cumulative sum of activity indicators I0,n and the
posterior expectation Eπ(θ0|D∗i ) remained constant. In contrast, the experimental arm was
active during the entire follow-up due to all posterior probabilities Pπ(θ1 ≥ θ0|D∗i ) staying
above the threshold ε = 0.1. Had also BARTS been applied, say, with threshold values ε1 = 0
and ε2 = 0.05, the control arm would have been dropped from the trial at the first i for which
Pπ(θ0+0.1 ≥ θ1|D∗i ) < 0.05. In the considered simulation this happened at i = 365. In Figure
S1 this is indicated in dark grey.
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B.1.2 Effect of the design parameters on treatment allocation

Next, we study the effect of the choice of the design parameters ε and δ in BARTA on some
frequentist type key characteristics of a trial. Figure S2 illustrates this effect for the joint
distribution of the activity indicators I0 and I1, considered as a function of the number of
treated patients. Empirical probabilities are shown, based on 5000 simulated trials of size
Nmax = 500, under Qnull with true parameter values θ0 = θ1 = 0.3 (left), and under Qalt with
θ0 = 0.3, θ1 = 0.5 (right).

For Qalt, θ0 + δ = 0.3 + 0.1 < 0.5 = θ1, and therefore the posterior probabilities Pπ(θ0 + δ ≥
θ1

∣∣D∗i ) tend to be small, at least for larger values of i. When they are below the threshold ε,
compliance with BARTA forces the control arm to be dormant. We can see this happening in
Figure S2 on the right, where the Qalt probability of {I0 = 0, I1 = 1} clearly dominates that
of {I0 = 1, I1 = 0}. The effect is strongest in the liberal parameter setting (c), and weakest
but still quite strong in the conservative alternative (b). In contrast, under Qnull, with θ0 = θ1,
the configuration {I0 = 1, I1 = 1} remains the most likely alternative for all considered values
of i, with the strongest tendency to do so in the conservative design (b) and the weakest in
the liberal (c). A third aspect to be noted on the left of Figure S2 is that the configuration
{I0 = 1, I1 = 0} was always much more likely than {I0 = 0, I1 = 1}, due to the control arm
being protected by the positive safety margin δ.

Finally, Figure S2 shows the expectations of Eπ
(
θk|D∗i

)
and Eπ

(
θk|D∗i

)
, (1 ≤ i ≤ 500, k = 0, 1),

computed from these simulations under Qnull and Qalt. For small i all these values are close
to 0.5, originating from the Uniform(0, 1)-priors assumed in all simulations. With more data,
the curves stabilize close to the true parameter values, but exhibit then a small negative bias.
This is an aspect shared by all adaptive methods favoring in treatment allocation arms with
relatively more successes in the past, see e.g. Villar et al. [9]. Given that the main goal of
each on-going trial is the mutual comparison of the different treatments involved, and that this
assessment is here made with respect to the joint posterior based on the current trial data,
the frequentist property of a small bias in the estimation of the individual treatment success
parameters, in the same direction, does not seem very crucial.

A complementary point of view is presented in Figure S3 showing the cumulative distribution
functions (CDFs) of N1(200), the number of patients out of the first 200 allocated by BARTA to
the experimental treatment, and of S(200), the total number of successes from both treatments
combined. Corresponding results from considering the first 100 and 500 patients are shown in
Figures S10 and S11 included in part C of this Supplement.

The CDFs in these figures are based on simulated data sets from Qnull and Qalt by using
the same parameter settings (a), (b) and (c) of BARTA as in Figure S2. In addition, the
corresponding CDFs are shown in design (d), in which case the adaptive treatment allocation
property of BARTA was inactivated by applying threshold value ε = 0, thereby leading to
a completely symmetric block randomization. Finally, for a comparison, also shown are the
CDFs of these variables when adaptive treatment allocation of patients was applied by using
Thompson’s rule with fractional exponents κ = 0.25, 0.50, 0.75 and 1.00. Note that κ = 0 would
correspond to treatment allocation by tossing a fair coin, and therefore the corresponding CDF
of S(200) would be very similar to that obtained under BARTA design (d).

The top part of Figure S3 shows how the application of BARTA, under Qnull, leads to often
allocating exactly half of the patients to both treatment arms, which happens in trial runs

7



Figure S2: Effect of the choice of the values of the design parameters ε and δ on the joint activity
states of the two treatment arms when applying BARTA for treatment allocation. Joint probabilities
of the different combinations of active and dormant states are shown, as functions of the number i of
treated trial participants. The results are based on 5000 simulated data sets of size Nmax = 500, under
Qnull with true parameter values θ0 = θ1 = 0.3 (left) and Qalt with values θ0 = 0.3, θ1 = 0.5 (right).
Three combinations of the design parameters were used: (a) ε = 0.1, δ = 0.1 (top), (b) ε = 0.05,
δ = 0.1 (middle), (c) ε = 0.2, δ = 0.05 (bottom). Also shown are the expectations EQnull

(
Eπ

(
θk|D∗i

))
and EQalt

(
Eπ

(
θk|D∗i

))
, (1 ≤ i ≤ 500, k = 0, 1), computed from these simulations.
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Figure S3: Effect of the choice of the design parameters ε and δ in BARTA on the number of patients
allocated to the experimental treatment and on the total number of treatment successes. Cumulative
distribution functions of N1(200) (top) and S(200) (bottom) are shown, based on 5000 simulated data
sets, under Qnull with true parameter values θ0 = θ1 = 0.3 and Qalt with values θ0 = 0.3, θ1 = 0.5.
Three combinations of the design parameters were used: (a) ε = 0.1, δ = 0.1, (b) ε = 0.05, δ = 0.1,
(c) ε = 0.2, δ = 0.05. In addition, (d) represents a completely symmetric treatment allocation. For
comparison we also plot the corresponding CDF under the alternative hypothesis obtained by using
fractional Thompson’s rule with respective parameters κ = 0.25, 0.5, 0.75 and 1.
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during which the dormant state had not been entered even once. Overall, due to the protective
safety margin δ > 0, BARTA has a tendency of allocating more patients to the control arm.
For Thompson’s rule, the distribution of N1(200) under Qnull is symmetric, but it has a large
variance, signalling corresponding instability in treatment allocation.

Under Qalt, the better performance of the experimental treatment is usually detected rather
early in the trial, and then, with more evidence from the data, all adaptive rules use progres-
sively stronger control in directing patients to this better treatment. However, there is a small
probability that, accidentally, more patients are given the inferior control treatment. It is clear,
as is also illustrated by Figure S1, that the risk for this to happen is highest early in the trial
when there are only few observed outcomes. In the present simulations, following BARTA with
design parameters (a), (b) and (c), these Qalt-probabilities were, respectively, 0.041, 0.023 and
0.049.

In the bottom part of Figure S3, the CDFs for S(200) under Qnull are identical in all designs,
due to both treatment arms having the same true response rate 0.3. For Qalt, employing the
symmetric block randomization scheme BARTA (d) gives EQalt

(S(200)) = 80. If all patients
could be given the better experimental treatment, the resulting optimal expected value would
be 100. In Figure S3, the expectations EQalt

(S(200)) for different adaptive schemes range from
85.6 for BARTA design (b), to 94.4 for Thompson’s rule with κ = 1.

Employing an initial burn-in period. The potential problem of accidentally allocating more
patients to an inferior treatment arm can be mitigated by delaying the workings of the adaptive
mechanism of BARTA, or Thompson’s rule, by employing the symmetric block randomization
scheme (d) until a fixed number of patients have been assigned to all treatments. To have
an idea of the size of the effect of this modification in the present example, we carried out
a simulation study identical to that leading to Figure S3 except that, of the considered 200
patients, the first 30 were divided evenly to the two treatments, 15 to both. The result is shown
in Figure S4.

The probabilities of imbalance in the unwanted direction are now lower, respectively 0.013,
0.005 and 0.019 for BARTA designs (a), (b) and (c). On the other hand, delaying the adaptive
mechanism from taking effect until outcome data from the first 30 patients are available ob-
viously lowers, in case of Qalt, the expected number of treatment successes by small amounts.
Alternative versions of burn-in in adaptive designs have been considered, e.g., in Thall & Wa-
then [6] and Thall et al. [7].

B.1.3 Effect of adaptive treatment allocation on frequentist performance measures

There are no free lunches, and these potential gains in terms of either more efficacious treat-
ments given to more patients in the trial, or smaller numbers of treated patients needed for
being able to select the better treatment, are to be weighed against corresponding potentially
stronger statistical inferences that might be obtained from more balanced designs. For a numer-
ical comparison, we applied a design where adaptive patient allocation was applied following
either BARTA or Thompson’s rule, and an assessment of the results, including the possibility
of dropping a treatment arm, was only allowed at the time at which a pre-specified number
i = Nmax of patients had been treated. Here we consider the choice Nmax = 200, reporting the
results from experiments with Nmax = 100 and 500 in part D of this Supplement.

In a trial with only two treatments, dropping either one is taken to mean selection of the other.
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Figure S4: Effect of employing a symmetric burn-in period of n0 = 30 patients in BARTA, on the
number of patients allocated to the experimental treatment and on the total number of treatment
successes. Cumulative distribution functions of N1(200) (top) and S(200) (bottom) are shown, based
on 5000 simulated data sets, under Qnull with true parameter values θ0 = θ1 = 0.3 and Qalt with values
θ0 = 0.3, θ1 = 0.5. Three combinations of the design parameters were used: (a) ε = 0.1, δ = 0.1, (b)
ε = 0.05, δ = 0.1, (c) ε = 0.2, δ = 0.05. In addition, (d) represents a completely symmetric treatment
allocation. For comparison we also plot the corresponding CDF under the alternative hypothesis
obtained by using fractional Thompson’s rule with respective parameters κ = 0.25, 0.5, 0.75 and 1.
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The final analysis made at Nmax need not necessarily use the same threshold values as BARTA,
and therefore we use new notations ε0 and δ0 for them. Accordingly, when performing such
an analysis at i = Nmax, the control arm is dropped if Pπ(θ0 + δ0 ≥ θ1|D∗Nmax

) ≤ ε0 and the
experimental arm if Pπ(θ1 ≥ θ0|D∗Nmax

) ≤ ε0. Obviously, at most one of these criteria can be
satisfied for given data D∗Nmax

when ε0 < 0.5. But it is also possible that neither of them is
satisfied, in which case no firm decision concerning treatment selection is made at Nmax.

Even then, however, there is the possibility of studying the joint posterior Pπ((θ0,θ1) ∈ ·|D∗Nmax
)

for the purpose of drawing further inferences from the results of the trial. For example, one
can print the posterior CDF Pπ(θ1 − θ0 ≤ x|D∗Nmax

),−1 ≤ x ≤ 1, and then decide, the study
protocol permitting this, whether to continue the trial by recruiting more participants. This
may then lead to either one of the two selection criteria being satisfied at a later point in time.

We now study how the application of different versions of adaptive treatment allocation influ-
ences the strength of statistical inferences, viewed from a frequentist perspective, that can be
drawn from trial data in Experiment 1. For this, we consider the probabilities Q(Pπ(θ0 + δ0 ≥
θ1|D∗Nmax

) ≤ ε0) and Q(Pπ(θ1 ≥ θ0|D∗Nmax
) ≤ ε0) for both Q = Qnull and Q = Qalt, choosing

δ0 = 0.05 and ε0 = 0.05. We applied BARTA with design parameters (a), (b), (c) and (d),
and Thompson’s rule with fractional exponents κ = 0.25, 0.50, 0.75 and 1.0. Our simulation
experiment consisted of 5000 repetitions of a trial up to 500 patients. From each simulated data
set we then computed numerical values for the posterior probabilities Pπ

(
θ1 ≥ θ0

∣∣D∗Nmax

)
and

Pπ
(
θ0 + δ0 ≥ θ1

∣∣D∗Nmax

)
, and drew, at Nmax = 200, the resulting CDFs under Qnull and Qalt,

shown in Figure S5. The corresponding figures at Nmax = 100 and Nmax = 500 are included in
part D of this Supplement as Figures S12 and S13.

Under Qnull, the CDFs of Pπ
(
θ1 ≥ θ0

∣∣D∗200) for different designs, shown in the bottom part of
Figure S5, are almost linear, which would correspond to the Uniform(0, 1) sampling distribution
and a correspondingly large variance. This is the case particularly in the designs following
Thompson’s rule, where the two treatment arms are considered symmetrically. For BARTA
the deviations from linearity are clearer, and most evident in the case of BARTA design (c).
The overall shape of the CDFs of Pπ

(
θ0+0.05 ≥ θ1

∣∣D∗200) in the top part of Figure S5 is convex,
signalling that the Qnull-density of these posterior probabilities tends to increase as their values
increase. The reason is the threshold δ0 = 0.05 providing extra protection for the control arm
arm against being dropped.

The CDFs generated under Qalt behave very differently. Those of Pπ
(
θ1 ≥ θ0

∣∣D∗200) in the
bottom part of Figure S5 show a high concentration of values close to 1, and those of Pπ

(
θ0 +

0.05 ≥ θ1

∣∣D∗200) in the top part of Figure S5 a somewhat lower but still high concentration
close to 0. The main difference between these CDFs stems from the opposite directions of the
inequalities between θ0 and θ1, and the difference in concentration is again due to the threshold
δ0 = 0.05.

Based on these results, we then computed numerical values for the commonly used operating
characteristics, the true and false positive and negative rates, shown in Table S1. More exactly,
we use the following terminology:

false positive rate = Qnull(Pπ(θ0 + δ0 ≥ θ1|D∗Nmax
) ≤ ε0),

true negative rate = Qnull(Pπ(θ1 ≥ θ0|D∗Nmax
) ≤ ε0),

true positive rate = Qalt(Pπ(θ0 + δ0 ≥ θ1|D∗Nmax
) ≤ ε0) and
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Figure S5: Effect of the design parameters ε and δ of BARTA, and κ of Thompson’s rule, on the CDFs
of the posterior probabilities P

(
θ0+0.05 ≥ θ1

∣∣D∗200) (top) and P
(
θ1 ≥ θ0

∣∣D∗200) (bottom) in the 2-arm
trial of Experiment 1 when applying BARTA for treatment allocation and making a final assessment
at i = Nmax = 200. The results are based on 5000 data sets generated under Qnull and Qalt when
using the following combinations of design parameters: (a) ε = 0.1, δ = 0.1, (b) ε = 0.05, δ = 0.1, (c)
ε = 0.2, δ = 0.05.
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ε0 = 0.05, δ0 = 0.05 (a) (b) (c) (d) κ = 0.25 κ = 0.5 κ = 0.75 κ = 1

Qnull : false positive 0.014 0.009 0.014 0.007 0.011 0.014 0.023 0.025

Qnull : true negative 0.074 0.086 0.040 0.052 0.054 0.056 0.073 0.074

Qnull : inconclusive 0.912 0.906 0.946 0.941 0.935 0.929 0.904 0.901

Qalt : true positive 0.723 0.711 0.303 0.694 0.665 0.598 0.516 0.443

Qalt : false negative 0.002 0.001 0.000 ∼ 0 ∼ 0 ∼ 0 0.001 0.001

Qalt : inconclusive 0.275 0.288 0.696 0.306 0.335 0.402 0.483 0.555

Table S1: True and false positive and negative rates when applying BARTA or Thompson’s
rule and threshold values ε0 = 0.05 and δ0 = 0.05 in a trial of size Nmax = 200.

false negative rate = Qalt(Pπ(θ1 ≥ θ0|D∗Nmax
) ≤ ε0).

In addition, the probabilities Q(Pπ(θ0 + δ0 ≥ θ1|D∗Nmax
) > ε0,Pπ(θ1 ≥ θ0|D∗Nmax

) > ε0) are
called inconclusive rates, respectively, under Q = Qnull and Q = Qalt.

The following conclusions are now immediate from Table S1. For Nmax = 200, the false positive
rates are small, below 2.5 percent, for all considered versions of adaptive treatment allocation.
This is true even for the "liberal" design parameters (c) in BARTA for which there was a
non-negligible probability, about five percent, of serious imbalance in treatment allocation in
the unwanted direction. The false negative rates are very small for all considered designs.
Under Qnull, the trial remains inconclusive with probability at least ninety percent, which
is consistent with the fact that then there is no difference between the true response rates
θ0 and θ1. Finally, the true positive rate (power) is on the moderate level of approximately
seventy percent when applying BARTA with design parameter values (a), (b) and (d), and
almost as high for Thompson’s rule with κ = 0.25. Recall here that (d) means symmetric
block randomization, which can thought to provide a suitable yardstick for such comparisons
of power. For larger values of κ, for which the adaptive mechanism is stronger, these rates are
smaller. Of all considered alternatives, the smallest true positive rate is obtained for the design
parameters (c).

Corresponding tables for Nmax = 100 and Nmax = 500 are provided, with comments, as Table
S2 and Table S3 in Section D of this Supplement.

Employing an initial burn-in period. We also studied the effect of the burn-in period,
described above in subsection A.1.2, on the frequentist performance measures in Table S1. For
this, we drew CDFs (not shown) similar to those in Figure S5, and then worked out numerical
values for the true and false positive and negative rates. The results, with some comments, can
be found in Table S4 in Section D.

Remarks on other test variants. Somewhat different numerical values are obtained if the
positive safety margin δ0 protecting the control arm from being dropped is given the value
δ0 = 0. With this extra protection removed, the rates of positive findings, both true and
false, will naturally increase, while the rates of negative results remain unchanged. Another
modification is to change the presently used decision criterion Pπ(θ1 ≥ θ0|D∗Nmax

) ≤ ε0 for
dropping the experimental arm into Pπ(θ1 ≥ θ0 + δ0|D∗Nmax

) ≤ ε0, in which case it would be
symmetric to the condition Pπ(θ0 + δ0 ≥ θ1|D∗Nmax

) ≤ ε0 for dropping the control arm. If
made, such a conclusion (in effect, declaring futility) is made more easily. The true and false
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negative rates become then larger, while the rates of positive results remain unaltered. For both
variants, the inconclusive rates are larger than when applying the original criteria. Numerical
values for these two variants, with Nmax = 200, are provided in Section D in Tables S5 and S6.

It depends on the concrete context whether either one of these alternative criteria would be
considered more appropriate than the version used in the construction of Table S1. All three
represent different forms of superiority trials. After a suitable modification in the definition of
the posterior probabilities that are considered, the same basic ideas and algorithms would also
apply in non-inferiority and equivalence trials (e.g., Lesaffre [1]).

B.1.4 Effect of the design parameters on adaptive treatment selection

We then modified the design by employing the adaptive BARTS algorithm for treatment se-
lection. In the definition of BARTS, nk,last is the last list index value for which treatment arm
k has not been dropped from the trial, 0 ≤ k ≤ K. Denote then by Nk,last the index of the last
patient receiving treatment k. Figure S6 shows the probabilities Q(N0,last ≤ i, N1,last > i) of
having dropped the control arm, Q(N0,last > i,N1,last ≤ i) of having dropped the experimental
arm, and Q(N0,last > i,N1,last > i) of not having done either of these, all considered at the time
i patients had been treated. Note that, since the possibility of dropping both treatment arms
in the same trial has been ruled out, the first two probabilities can be written in the shorter
form Q(N0,last ≤ i) and Q(N1,last ≤ i). Empirical estimates of these probabilities are shown,
based on 5000 simulated samples from Qnull (left) and Qalt (right). The earlier threshold values
(a), (b) and (c) for ε and δ were again applied, but combining them with ε1 = 0 and ε2 = 0.05
for BARTS.

In Figure S6, on the left, the curve Qnull(N0,last ≤ i), 1 ≤ i ≤ 500, forming the upper boundary
of the blue band "1 active, 0 dropped", depicts the false positive rate evaluated at i. On the
right, Qalt(N0,last ≤ i) is the true positive rate, or power at i. The widths of the brown bands
in this figure can be interpreted similarly, with Qnull(N1,last ≤ i) on the left being the true
negative rate evaluated at i, and Qalt(N1,last ≤ i) on the right the false negative rate. The
latter probabilities are small, at most 0.05 for the considered design parameter values (a), (b)
and (c). The widths of the yellow bands represent the inconclusive rates at i.

From this follows that also the areas of these colored bands Figure S6 have meaningful inter-
pretations in terms of expected values. The area of the blue region from 1 to i is the expected
value, with respect to Qnull (left) and to Qalt (right), of the number of patients among the
first i, who were directed to the experimental treatment in the situation in which the control
arm had already been dropped. The areas of the brown bands can be interpreted in a similar
fashion, with the roles of the two treatments interchanged. The area of the yellow band from 1
to i is the expected value, again with respect to Qnull (left) and to Qalt (right), of the random
variable min{N0,last, N1,last, i}.

Finally, Figure S6 shows the expectations of Eπ
(
θk|D∗i

)
and Eπ

(
θk|D∗i

)
, (1 ≤ i ≤ 500, k = 0, 1),

computed from these simulations under Qnull and Qalt. Overall, the behaviour of these curves is
similar to those in Figure S2, although the negative bias seems here slightly larger. Apparently,
this difference is due to BARTS imposing a stronger control on treatment allocation.
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Figure S6: Probabilities of dropping treatments when applying BARTS, together with expectations
of the success parameters, both shown as functions of the cumulative number of treated patients. The
results are based on 5000 simulated data sets of size Nmax = 500, under Qnull with true parameter
values θ0 = θ1 = 0.3 (left) and Qalt with values θ0 = 0.3, θ1 = 0.5 (right). Three combinations of
design parameters were considered: (a) ε = 0.1, ε1 = 0, ε2 = 0.05, δ = 0.1 (top), (b) ε = 0.05, ε1 =
0, ε2 = 0.05, δ = 0.1 (middle), (c) ε = 0.2, ε1 = 0, ε2 = 0.05, δ = 0.05 (bottom). Also shown are the
expectations EQnull

(
Eπ

(
θk|D∗i

))
and EQalt

(
Eπ

(
θk|D∗i

))
, (1 ≤ i ≤ 500, k = 0, 1), computed from these

simulations. For more details, see text.
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B.2 Simulation studies with a 4-arm trial: Experiment 2

Our second simulation experiment is modeled following the set-up of Table 7 in Villar et al.
[9], describing a trial with K = 3 experimental arms and a control arm. The hypotheses were
H0 : θk ≤ θ0 for all k, 1 ≤ k ≤ 3, and its logical complement H1 : θk > θ0 for at least one k, 1 ≤
k ≤ 3. Considered as a multiple hypothesis testing problem, applying significance level α = 0.05
and the Bonferroni correction, H0 was tested separately against each alternative H1k : θk > θ0
at level α/3. The numerical results shown in Table 7 of Villar et al. [9] were based on using the
fixed trial size of Nmax = 80, together with parameter values (θ0, θ1, θ2, θ3) = (0.3, 0.3, 0.3, 0.3)
for computing the family-wise error rate (FWER), and (θ0, θ1, θ2, θ3) = (0.3, 0.4, 0.5, 0.6) for
computing the power of concluding H1. The small trial size was justified by thinking of a
rare disease setting, where the number of patients in the trial could be a large proportion of
all patients with the considered condition. Below, we continue using the shorthand notations
Qnull and Qalt for these two parameter settings.

B.2.1 Monitoring the operation of BARTA in Experiment 2

As in Experiment 1, we first monitored the execution of this trial, based on a single simulation
from Qalt, and thereby applying BARTA for treatment allocation with threshold values ε = 0.1
and δ = 0.1. Figure S7 presents an example based on such simulated data, showing the time-
evolution of the posterior probabilities Pπ

(
θ0 + δ ≥ θ∨

∣∣D∗i ) and Pπ
(
θk = θ∨

∣∣D∗i ), 1 ≤ k ≤ 3, of
the the posterior expectations Eπ

(
θk|D∗i

)
and of the cumulative sums of the activity indicators

Ik, 0 ≤ k ≤ 3, all considered at times at which i patients had been treated and up to maximal
trial size Nmax = 500.

From the top display we can see how, with some luck in the simulation that was carried
out, the posterior probabilities Pπ

(
θ0 + δ ≥ θ∨

∣∣D∗i ),Pπ(θ1 = θ∨
∣∣D∗i ) and Pπ

(
θ2 = θ∨

∣∣D∗i )
started progressively to take on values below the given threshold ε = 0.10 and finally stayed
there during the remaining simulation run. In contrast, after considerable early variation, the
posterior probabilities Pπ

(
θ3 = θ∨

∣∣D∗i ) corresponding to the highest true response rate θ3 = 0.6
stayed consistently above that threshold level, and actually started to dominate the others from
approximately i = 120 onward. The cumulative activity indicators for all treatment arms in
the bottom display of Figure S7 show clearly when each of these arms was active or dormant.
In this simulation, there was some back-and-forth movement between these two states, but
finally treatment arms 0, 1 and 2, respectively after 153, 174, and 68 treated patients, remained
dormant. The dotted line shows the cumulative numbers of successes in the simulation, ending
up with the total S(500) = 294, not much short of the optimal expected value 300 that would
have been obtained if all 500 patients had been allocated to the best treatment with success
rate θ3 = 0.6.
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B.2.2 Effect of the design parameters on treatment allocation

Next, as in Experiment 1, we studied the effect of the choice of the design parameters ε and δ in
BARTA on some selected frequentist type key characteristics of the trial. For this, we simulated
2000 data sets of size Nmax = 500, under both Qnull and Qalt. The same three combinations
of the design parameters were used as before: a) ε = 0.1, δ = 0.1, b) ε = 0.05, δ = 0.1, c)
ε1 = 0.2, δ = 0.05. For the analysis, θ0, . . . ,θ3 were assumed to be a priori independent and
uniformly distributed on (0, 1).

In a 4-arm trial there would in principle be 24 − 1 = 15 possibilities of forming combinations
of active and dormant states at a given i, and it would be hard to present such results in an
easily understandable graphical form. The main aim of the trial of this type is to find out
whether one of the experimental treatments would be better than the others, and in particular,
better than the control. In view of this, we call treatment k maximal at i if Pπ

(
θk = θ∨|D∗i

)
≥

Pπ
(
θ` = θ∨|D∗i

)
∀` 6= k, and then focus our attention on events of the form {treatment k is

maximal, control treatment is dormant}. The results are shown in Figure S8. In the subfigures,
the width of each of the 4 bands at i corresponds to the Q-probability of a respective event.
The three lower bands represent the Q-probabilities of {treatment k is maximal at i, I0,i = 0},
1 ≤ k ≤ 3, and the upper band (violet) the Q-probabilities of {I0,i = 1}.

In the present 4-arm experiment, we can think of all three experimental arms combined as
competing, and being evaluated against, the control arm, in a way analogous to the single
experimental treatment in Experiment 1. Seen from this angle, the sum of the widths of the
three lower bands of Figure S8 corresponds to the width of the lowest band in Figure S2, while
that of the top one in the former corresponds to the sum of the top two in the latter.

On the left of Figure S8, describing Qnull, the violet band corresponding to {I0,i = 1} is broader
than the other three, not only because the assumed initial state {I0,1 = 1}, but because the
control arm is protected by δ = 0.1 against being moved to the dormant state. The other three
bands are similar to each other due to the assumed symmetry of the experimental treatments 1,
2 and 3 under Qnull. All these probabilities stabilize rather quickly with growing i, well before
i = 100.

On the right, corresponding to Qalt, the violet band becomes narrower with growing i, los-
ing ground mainly to the yellow band, which represents the Qalt-probabilities of the events
{treatment 3 is maximal at i, I0,i = 0}. The widths of the three lower bands, yellow, brown and
blue, are seen to follow the same order as the corresponding true response parameter values.
Approximate values of these probabilities can be read from Figure S8 as well. For example,
considering design (a) at i = 500, we get Qalt(treatment 3 is maximal at 500, I0,500 = 0) = 0.763.
Overall, designs (a) and (b) led to very similar Qalt-probabilities, while the more liberal design
(c), which allowed for more variability during the early stages of the trial, gave rise to somewhat
broader brown and blue bands.

B.2.3 Effect of the design parameters on treatment selection

We then employed also BARTS, in order to study the ability of this algorithm to drop possibly
inferior treatment arms from the trial and thereby to act as a selection mechanism for those
performing better. Using data simulated under Qnull and Qalt, the same three combinations of
design parameters as in Experiment 1 were again considered: (a) ε = 0.1, ε1 = 0, ε2 = 0.05,
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Figure S8: Effect of the choice of the values of the design parameters ε and δ in the 4-arm trial of
Experiment 2 when applying BARTA for treatment allocation. Joint probabilities of some combinations
of active and dormant states are shown, as functions of the number i of treated patients. The results
are based on 2000 data sets of size Nmax = 500, under Qnull (left) and Qalt (right). Three combinations
of the design parameters were used: (a) ε = 0.1, δ = 0.1 (top), (b) ε = 0.05, δ = 0.1 (middle), (c)
ε1 = 0.2, δ = 0.05 (bottom). In the subfigures, the width of each of the 4 bands corresponds to the
Q-probability of a respective event in the box. Also shown are the expectations EQnull

(
Eπ

(
θk|D∗i

))
and EQalt

(
Eπ

(
θk|D∗i

))
, (1 ≤ i ≤ 500, 1 ≤ k ≤ 3), computed from these simulations. For more details,

see text.
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δ = 0.1, (b) ε = 0.05, ε1 = 0, ε2 = 0.05, δ = 0.1, (c) ε = 0.2, ε1 = 0, ε2 = 0.05, δ = 0.05.

The results are shown in Figure S9. The main distinction to Figure S8 is that, in the definition
of the four colored bands, the events {I0,i = 0} have here been replaced by {N0,last ≤ i}.
The widths of the three lowest bands therefore represent the Q-probabilities of the events
{treatment k is maximal at i, N0,last ≤ i}, 1 ≤ k ≤ 3, while that of the violet band is the
Q-probability of {N0,last > i}. As in the case of Experiment 1, these events have operational
meanings comparable to corresponding key concepts used in hypothesis testing. Thus, on the
left of Figure S9, the sum of the three lower bandwidths at i is the false positive rate when
observing outcome data from i patients. If its size is of major concern to a person considering
the design from a frequentist perspective, it can be made somewhat smaller in a similar fashion
as suggested in the context of Experiment 1, by employing a form of a burn-in period and
activating adaptive treatment allocation only after some fixed number of patients have been
treated in all four arms.

C Additional figures to subsection B.1.2

Figures S10 and S11 below complement Figure S3, where we illustrated the effect of the design
parameters of BARTA and Thompson’s rule on treatment allocation in a two-arm trial with
Nmax = 200, and on the consequent total number of treatment successes. Here we do the same
for Nmax = 100 in Figure S10 and for Nmax = 500 in Figure S11.

For data generated under Qnull, the overall shape of the CDFs in Figures S10 and S11 remains
remarkably close to that in Figure S3, where the trial size was Nmax = 200. The differences
become more evident when considering Qalt, in which case the adaptive rules can use their
potential to allocate more patients to the treatment with higher true success rate. But learning
from data takes time, and therefore the gains from using such adaptive rules become progres-
sively more evident as the trial size increases. Thus, the expected number of successes can be
increased by approximately 10 percent by employing a strong adaptive treatment allocation
rule when Nmax = 100, by 15 percent when Nmax = 200, and 20 percent when Nmax = 500.

Another point of interest in the case of Qalt is the probability of unwanted imbalance, allocating
more patients to the inferior control arm than to the better experimental one. The highest risk
for this to happen is in the case of BARTA design (c), for which it was found to be approximately
5 percent when Nmax = 200. The corresponding percentages for Nmax = 100 and Nmax = 500
were, respectively, 10 and 3. BARTA (c) appears to be the only design, among those considered,
for which there is a non-negligible probability that the imbalance turns out to be serious. For
the other designs, including different versions of Thompson’s rule, the probabilities are much
smaller, and very small for Nmax = 500.
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Figure S9: Effect of the design parameters ε and δ in the 4-arm trial of Experiment 2 when applying
BARTS for treatment selection. Joint probabilities of some combinations of selected treatments are
shown, as functions of the number i of treated patients. The results are based on 2000 data sets of
size Nmax = 500, under Qnull (left) and Qalt (right). Three combinations of design parameters were
considered: (a) ε = 0.1, ε1 = 0, ε2 = 0.05, δ = 0.1 (top), (b) ε = 0.05, ε1 = 0, ε2 = 0.05, δ = 0.1
(middle), (c) ε = 0.2, ε1 = 0, ε2 = 0.05, δ = 0.05 (bottom). In the subfigures, the width of each of
the 4 bands corresponds to the Q-probability of a respective event in the box. Also shown are the
expectations EQnull

(
Eπ

(
θk|D∗i

))
and EQalt

(
Eπ

(
θk|D∗i

))
, (1 ≤ i ≤ 500, 1 ≤ k ≤ 3), computed from

these simulations. For more details, see text.
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Figure S10: Effect of the choice of the threshold parameters ε and δ in BARTA on the number
of patients allocated to the experimental treatment and on the total number of treatment successes.
Cumulative distribution functions of N1(100) (top) and S(100) (bottom) are shown, based on 5000
simulated data sets, under Qnull with true parameter values θ0 = θ1 = 0.3 and Qalt with values
θ0 = 0.3, θ1 = 0.5. Three combinations of the design parameters were used: (a) ε = 0.1, δ = 0.1, (b)
ε = 0.05, δ = 0.1, (c) ε = 0.2, δ = 0.05. In addition, (d) represents a completely symmetric treatment
allocation. For comparison we also plot the corresponding CDF under the alternative hypothesis
obtained by using fractional Thompson’s rule with respective parameters κ = 0.25, 0.5, 0.75 and 1.
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Figure S11: Effect of the choice of the threshold parameters ε and δ in BARTA on the number
of patients allocated to the experimental treatment and on the total number of treatment successes.
Cumulative distribution functions of N1(500) (top) and S(500) (bottom) are shown, based on 5000
simulated data sets, under Qnull with true parameter values θ0 = θ1 = 0.3 and Qalt with values
θ0 = 0.3, θ1 = 0.5. Three combinations of the design parameters were used: (a) ε = 0.1, δ = 0.1, (b)
ε = 0.05, δ = 0.1, (c) ε = 0.2, δ = 0.05. In addition, (d) represents a completely symmetric treatment
allocation. For comparison we also plot the corresponding CDF under the alternative hypothesis
obtained by using fractional Thompson’s rule with respective parameters κ = 0.25, 0.5, 0.75 and 1.
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D Additional figures and tables to subsection B.1.3

Effect of trial size on frequentist performance

In subsection B.1.3 above we studied the performance of different adaptive designs in terms of
true and false positive and negative rates, by considering trial size Nmax = 200 in Figure S5
and Table S1. Below we present corresponding results for Nmax = 100 in Figure S12 and Table
S2, and for Nmax = 500 in Figure S13 and Table S3. When combined, these results give us an
idea about how such measures depend on the size of the trial.

Figures S12 and S13 bear close similarity to Figure S5. The main differences can be seen
in the CDFs arising from data generated under Qalt. The CDFs of the posterior probabilities
Pπ(θ1 ≥ θ0|D∗Nmax

) move to the right as Nmax grows from 100 to 200 and then to 500, thereby
signalling that these probabilities become stochastically larger with growing trial size. A similar
movement, somewhat slower and in the opposite direction, is seen in the CDFs of Pπ(θ0+0.05 ≥
θ1|D∗Nmax

) with growing Nmax.

The following conclusions can now be made from Tables S1, S2 and S3. Under Qnull, the false
positive rates are generally somewhat smaller for larger trial sizes, but remain under 0.025 even
in the case of Nmax = 100. The true negative rates are usually larger, by a few percentage
points, when the trial size is changed from 100 to 200 and then to 500, and the inconclusive
rates correspondingly smaller, typically attaining values on either side of ninety percent. The
false negative rates are very small for all considered designs.

In contrast, as can be expected, the true positive rate (power) under Qalt depends strongly
on the size of the trial. As reported in B.1.3, for Nmax = 200 it has the moderate level of
approximately seventy percent for BARTA designs (a), (b) and (d), and almost as high for
Thompson’s rule with κ = 0.25. For these same designs and Nmax = 100, the true positive
rates are lower, on both sides of 45 percent, but for Nmax = 500 already in the range of 95
percent. Again, of interest is to note that, in terms of these frequentist measures, three adaptive
rules perform as well as the symmetric block randomization design (d). For Thompson’s rule,
larger values of κ lead to greater instability in the behavior of the adaptive mechanism and
consequent weaker frequentist performance. Of all considered alternatives, the smallest true
positive rate is obtained for the design (c) of BARTA. The false negative rates are very small
for all considered designs.
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Figure S12: Effect of the design parameters ε and δ of BARTA, and κ of Thompson’s rule, on the
CDFs of the posterior probabilities P

(
θ0 + 0.05 ≥ θ1

∣∣D∗100) (top) and P
(
θ1 ≥ θ0

∣∣D∗100) (bottom) in
the 2-arm trial of Experiment 1 when applying BARTA for treatment allocation and making a final
assessment at i = Nmax = 100. The results are based on 5000 data sets generated under Qnull and Qalt

when using the following combinations of design parameters: (a) ε = 0.1, δ = 0.1, (b) ε = 0.05, δ = 0.1,
(c) ε = 0.2, δ = 0.05.
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Figure S13: Effect of the design parameters ε and δ of BARTA, and κ of Thompson’s rule, on the
CDFs of the posterior probabilities P

(
θ0 + 0.05 ≥ θ1

∣∣D∗500) (top) and P
(
θ1 ≥ θ0

∣∣D∗500) (bottom) in
the 2-arm trial of Experiment 1 when applying BARTA for treatment allocation and making a final
assessment at i = Nmax = 500. The results are based on 5000 data sets generated under Qnull and Qalt

when using the following combinations of design parameters: (a) ε = 0.1, δ = 0.1, (b) ε = 0.05, δ = 0.1,
(c) ε = 0.2, δ = 0.05.
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ε0 = 0.05, δ0 = 0.05 (a) (b) (c) (d) κ = 0.25 κ = 0.5 κ = 0.75 κ = 1

Qnull : false positive 0.020 0.013 0.012 0.016 0.013 0.020 0.022 0.018

Qnull : true negative 0.058 0.078 0.032 0.051 0.050 0.054 0.066 0.066

Qnull : inconclusive 0.922 0.908 0.956 0.933 0.937 0.926 0.911 0.917

Qalt : true positive 0.482 0.473 0.215 0.455 0.419 0.398 0.344 0.303

Qalt : false negative 0.003 0.001 0.002 ∼ 0 ∼ 0 0.001 0.001 0.002

Qalt : inconclusive 0.516 0.525 0.783 0.545 0.581 0.601 0.655 0.695

Table S2: True and false positive and negative rates when applying BARTA or Thompson’s
rule and threshold values ε0 = 0.05 and δ0 = 0.05 in a trial of size Nmax = 100.

ε0 = 0.05, δ0 = 0.05 (a) (b) (c) (d) κ = 0.25 κ = 0.5 κ = 0.75 κ = 1

Qnull : false positive 0.009 0.004 0.014 0.001 0.005 0.008 0.015 0.024

Qnull : true negative 0.092 0.108 0.059 0.049 0.057 0.068 0.077 0.086

Qnull : inconclusive 0.899 0.888 0.927 0.950 0.939 0.924 0.908 0.890

Qalt : true positive 0.954 0.964 0.421 0.959 0.937 0.873 0.757 0.650

Qalt : false negative 0.002 0.001 0.001 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0

Qalt : inconclusive 0.044 0.035 0.578 0.041 0.063 0.127 0.243 0.350

Table S3: True and false positive and negative rates when applying BARTA or Thompson’s
rule and threshold values ε0 = 0.05 and δ0 = 0.05 in a trial of size Nmax = 500.

Employing an initial burn-in period

In Table S4 we consider the effect of the design modification, where the first 30 patients are
divided evenly, by using a block randomization, to the two treatments. Adaptive treatment
allocation is then applied after this, either in the form of BARTA or Thompson’s rule, and
the performance measures are evaluated at Nmax = 200 from a simulation experiment of 5000
repetitions. The numerical values in Table S4 are compared naturally to those in Table S1,
where the design was the same except that no burn-in was used.

Overall, the differences are small. The largest change is in the values of true positive rate
(power) for BARTA design (c), which has increased from 0.303 in Table S1 to 0.443 due to the
stabilizing initial burn-in. Smaller changes can be seen in the false positive rates for BARTA (c)
and Thompson’s rule with κ = 0.75 and κ = 1, where burn-in has trimmed down these already
rather low rates by small amounts. The conclusion from this experiment is that, in a trial of
size Nmax = 200, employing an initial burn-in period has a small to modest stabilizing effect
on the frequentist performance of those adaptive designs in which the adaptive mechanism was
strongest.

Remarks on other test variants

In the first variant, we consider in Table S5 the case δ0 = 0, where the special protection
against dropping the control arm in the final test at Nmax has been removed. Thus we write
false positive rate = Qnull(Pπ(θ0 ≥ θ1|D∗Nmax

) ≤ ε0), true negative rate = Qnull(Pπ(θ1 ≥
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ε0 = 0.05, δ = 0.05 (a) (b) (c) (d) κ = 0.25 κ = 0.5 κ = 0.75 κ = 1

Qnull : false positive 0.014 0.010 0.019 0.008 0.011 0.015 0.015 0.020

Qnull : true negative 0.077 0.085 0.061 0.050 0.056 0.057 0.068 0.064

Qnull : inconclusive 0.909 0.905 0.920 0.942 0.934 0.928 0.917 0.915

Qalt : true positive 0.727 0.702 0.443 0.689 0.676 0.615 0.533 0.464

Qalt : false negative ∼ 0 ∼ 0 0.001 ∼ 0 ∼ 0 ∼ 0 ∼ 0 0.001

Qalt : inconclusive 0.272 0.298 0.556 0.311 0.324 0.385 0.467 0.535

Table S4: True and false positive and negative rates when applying BARTA or Thompson’s
rule and threshold values ε0 = 0.05 and δ0 = 0.05 and a burn-in period of n0 = 30 patients in
a trial of size Nmax = 200.

ε0 = 0.05, δ0 = 0 (a) (b) (c) (d) κ = 0.25 κ = 0.5 κ = 0.75 κ = 1

Qnull : false positive 0.050 0.046 0.082 0.051 0.053 0.056 0.068 0.075

Qnull : true negative 0.074 0.086 0.040 0.052 0.054 0.056 0.073 0.074

Qnull : inconclusive 0.876 0.868 0.878 0.896 0.892 0.888 0.859 0.851

Qalt : true positive 0.897 0.896 0.622 0.891 0.886 0.857 0.794 0.739

Qalt : false negative 0.002 0.001 0.001 ∼ 0 ∼ 0 ∼ 0 0.001 0.001

Qalt : inconclusive 0.101 0.103 0.377 0.109 0.114 0.143 0.204 0.260

Table S5: True and false positive and negative rates when applying BARTA or Thompson’s
rule and threshold values ε0 = 0.05 and δ0 = 0 in a trial of size Nmax = 200. First test variant,
see text.

θ0|D∗Nmax
) ≤ ε0), true positive rate = Qalt(Pπ(θ0 ≥ θ1|D∗Nmax

) ≤ ε0) and false negative rate =
Qalt(Pπ(θ1 ≥ θ0|D∗Nmax

) ≤ ε0). Inconclusive rates are the probabilities Q(Pπ(θ0 ≥ θ1|D∗Nmax
) >

ε0),Pπ(θ1 ≥ θ0|D∗Nmax
) > ε0), for Q = Qnull and Q = Qalt. As noted in the main text, this

change from the original criteria implies that, compared to the respective values provided in
Table S1, all positive rates are now larger, whereas the negative rates remain intact. Of the
former, the rates for BARTA (a), (b) and (d), and for Thompson’s rule with κ = 0.25, are again
quite similar, with false positive rates varying on both sides of five percent and true positive
rates (power) reaching levels of almost ninety percent. The frequentist performance of the other
designs is somewhat weaker, deteriorating with increasing instability of the allocation rule.

In the second variant of the final test, the experimental arm is dropped if Pπ(θ1 ≥ θ0 +
δ0|D∗Nmax

) ≤ ε0. Therefore, in Table S6 we write false positive rate = Qnull(Pπ(θ0 + δ0 ≥
θ1|D∗Nmax

) ≤ ε0), true negative rate = Qnull(Pπ(θ1 ≥ θ0+ δ0|D∗Nmax
) ≤ ε0), true positive rate =

Qalt(Pπ(θ0+δ0 ≥ θ1|D∗Nmax
) ≤ ε0) and false negative rate = Qalt(Pπ(θ1 ≥ θ0+δ0|D∗Nmax

) ≤ ε0).
The probabilities Q(Pπ(θ0 + δ0 ≥ θ1|D∗Nmax

) > ε0,Pπ(θ1 ≥ θ0 + δ0|D∗Nmax
) > ε0), for Q = Qnull

and Q = Qalt, are inconclusive rates. This change means that the negative rates, both true
and false, are now larger than the respective values in Table S1, while the positive rates remain
intact. The true negative rates, which were below ten percent in Table S1, vary in Table S6 on
both sides of twenty percent. The inconclusive rates under Qnull are now lower than in Table
S5, but still rather high, between seventy-five and eighty percent. The false negative rates
are slightly higher than in Table S1, but still very low for all allocation rules. The considered
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ε0 = 0.05, δ0 = 0.05 (a) (b) (c) (d) κ = 0.25 κ = 0.5 κ = 0.75 κ = 1

Qnull : false positive 0.014 0.009 0.014 0.007 0.011 0.014 0.023 0.025

Qnull : true negative 0.236 0.216 0.201 0.196 0.187 0.195 0.210 0.197

Qnull : inconclusive 0.750 0.776 0.785 0.797 0.803 0.791 0.768 0.778

Qalt : true positive 0.723 0.711 0.303 0.694 0.665 0.598 0.516 0.443

Qalt : false negative 0.005 0.001 0.004 ∼ 0 ∼ 0 ∼ 0 0.001 0.002

Qalt : inconclusive 0.272 0.288 0.693 0.306 0.335 0.402 0.483 0.555

Table S6: True and false positive and negative rates when applying BARTA or Thompson’s
rule and threshold values ε0 = 0.05 and δ0 = 0.05 in a trial of size Nmax = 200. Second test
variant, see text.

performance measures of BARTA (a), (b) and (d), and of Thompson’s rule with κ = 0.25, are
again quite similar to each other.
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