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In this supplementary material, we present the derivation of the weights presented in Section 3.1.1 of the
main paper (in Section A), together with an example of weights computation (in Section B), and proofs
of the properties of the estimators explained in Section 3.1.2 (in Section C). Moreover, we report further
remarks on the impact of time trends on the variance estimation in Section D.
We also present here the results of the simulation study and results from additional simulations (in Sections E
and F, respectively). Regarding the simulation results in Section E, we show the bias and root mean squared
error of the treatment effect estimators in the presence of time trends. We also present the results for those
models in Section 4 of the main paper.
Throughout this document, we use the following abbreviations for the models: ALLTC refers to models
using all treatment data and control (see equations 1 and 6 in the main paper), ALLTCI to models using
all treatment data and control with the interaction between time and treatment arm (see equations 2 and
7), and TC to models using only data from one treatment arm and the control (see equations 5 and 8); the
suffixes Step/Linear indicate whether models adjust time linearly or step-wise.

A Weights derivation

We may obtain the estimates for the linear model by forming the design matrix X, with one row for each
patient and with columns for the intercept, arm 1, arm 2, and 2nd time period. If the interaction is included,
then X contains an additional column for interaction of arm 1 and the 2nd time period. The matrix elements
are 0’s and 1’s, where 1 indicates that a particular patient matches up to a particular feature. For instance,
for the model without interaction, we have

X =


n0,1 1 0 0 0
n1,1 1 1 0 0
n0,2 1 0 0 1
n1,2 1 1 0 1
n2,2 1 0 1 1


where the row labels indicate their multiplicities.
The vector estimate of all parameters is (XTX)−1XTy, where y is the vector of patient responses. Thus each
parameter estimate is a linear combination of the observations. Our interest lies in the estimate of the arm 2
treatment effect

θ̂2 =
∑
j

vjyj

where vj is the [3, j] element of (XTX)−1XT (since row 3 corresponds to the treatment effect of arm 2) and
yj is the response for the jth patient. Note that all patients with the same covariate values (and thus identical
rows of the X matrix) will have the same vj values, allowing us to collect terms and rewrite

θ̂2 =
∑
k,s

wk,sȳk,s

where wk,s = nk,svk,s and vk,s is the common value of vj for all patients in arm k and time period s. Note
that the weighted average is determined entirely by the sample sizes in each arm and time period, not the
responses for those patients.
If there are no arm 2 patients in time period 1 (n2,1 = 0), and the interaction model is used, then the weighted
average is extremely simple, with all wk,s = 0 except for w0,2 = −1 and w2,2 = 1. (We omit the mathematical
derivation.) In other words, the estimated treatment is simply the difference in means in the 2nd time period,
resulting in the concurrent controls analysis.
If there are no arm 2 patients in time period 1 (n2,1 = 0), and the non-interaction model is used, then the
weights can be obtained as follows. Let v be a column vector created by concatenating individual patient
weights vj so that the first n0,1 elements correspond to patients on arm 0 in period 1, the following n1,1

elements correspond to patients on arm 1 in period 1, the following n0,2 elements correspond to patients on
arm 0 in period 2, the following n1,2 elements correspond to patients on arm 1 in period 2, the final n2,2
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elements correspond to patients on arm 2 in period 2. Since the 3rd row of (XTX)−1XT corresponds to row
vector vT, after taking a transpose we have that the 3rd column of X(XTX)−1 corresponds to vector v. Also,
observe that 

n0,1 n1,1 n0,2 n1,2 n2,2

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

v =


w0,1

w1,1

w0,2

w1,2

w2,2


where the column labels indicate column multiplicities. Then,

X(XTX)−1


0
0
1
0

 = v

is equivalent to 

n0,1 n1,1 n0,2 n1,2 n2,2

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

X(XTX)−1


0
0
1
0

 =


w0,1

w1,1

w0,2

w1,2

w2,2


It is easy to see that



n0,1 n1,1 n0,2 n1,2 n2,2

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

X =


n0,1 0 0 0
n1,1 n1,1 0 0
n0,2 0 0 n0,2

n1,2 n1,2 0 n1,2

n2,2 0 n2,2 n2,2


and that

XTX =


N n1,1 + n1,2 n2,2 n0,2 + n1,2 + n2,2

n1,1 + n1,2 n1,1 + n1,2 0 n1,2

n2,2 0 n2,2 n2,2

n0,2 + n1,2 + n2,2 n1,2 n2,2 n0,2 + n1,2 + n2,2


It can be shown that

(XTX)−1


0
0
1
0

 =


− 1

n0,1
ϱ(

1
n0,1

+ 1
n1,1

)
ϱ

1
n2,2

+
(

1
n0,1

+ 1
n1,1

+ 1
n1,2

)
ϱ

−
(

1
n1,1

+ 1
n1,2

)
ϱ


where

ϱ =

1
n0,2

1
n0,1

+ 1
n1,1

+ 1
n0,2

+ 1
n1,2

Therefore, 
w0,1

w1,1

w0,2

w1,2

w2,2

 =


−ϱ
ϱ

ϱ− 1
−ϱ
1
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B Example weights for a particular case

If equal randomisation is employed also for arm 2, that is, n0,2 = n1,2 = n2,2, then we can express the weights
using the ratio of period sample sizes. Denoting by φ = N1/N2 and taking into account that ω = 3

2φ, we can
rewrite the weights’ matrix as

k\s 1 2
0 − 1

2 + 1
3φ+2 − 1

2 − 1
3φ+2

1 1
2 − 1

3φ+2 − 1
2 + 1

3φ+2

2 0 1

thus obtaining θ̃2 = (ȳ2,2 − ȳ0,2) +
(

1
2 − 1

3φ+2

)
[(ȳ1,1 − ȳ0,1)− (ȳ1,2 − ȳ0,2)]. For instance, if N1/N2 = 2/3,

then we have

k\s 1 2
0 −0.25 −0.75
1 0.25 −0.25
2 0 1

, and θ̃2 = (ȳ2,2 − ȳ0,2) + 0.25 [(ȳ1,1 − ȳ0,1)− (ȳ1,2 − ȳ0,2)];

C Properties of the estimators and tests under model-based period-
wise adjustments

Model (4) in the paper, can be written as

E(g(Yj) |tj ) = θkj
+ f(tj) (1)

where kj = 0, 1, 2 is the treatment that patient j was randomised to. We set θ0 := η0 for convenience of
notation. Here, and in all subsequent derivations, we always condition on the observed kj , but treat tj as
random.
We are considering 2 periods: P = 1 with kj = 0, 1 and P = 2 with kj = 0, 1, 2. Within period, tj does not
depend on kj due to randomisation. For period 2 alone, we use the model

E(g(Yj) |P = 2) = µ0 + ν + θkj
. (2)

This arises from the conditional model in (1) via

E(yj |P = 2) = E(E(yj |tj , P = 2)) = E(f(tj)|P = 2) + θkj = µ0 + ν + θkj .

Here, E(f(tj)|P = 2) is the same for all j due to randomisation and E(f(tj)|P = 2) =: µ0 + ν is just a
naming convention.
For period 1 alone, we use the model

E(g(Yj) |P = 1) = µ0 + θkj . (3)

This arises from the conditional model in (1) via

E(g(Yj) |P = 1) = E(E(g(Yj) |tj , P = 1)) = E(f(tj)|P = 1) + θkj
= µ0 + θkj

.

Here, E(f(tj)|P = 1) is the same for all j due to randomisation and E(f(tj)|P = 1) =: µ0 is a naming
convention. Taken together, we have µ0 = E(f(tj)|P = 1) and ν = E(f(tj)|P = 2)− E(f(tj)|P = 1).
From these considerations, it is obvious that (if we are not interested in the functional form of f(tj)), we
can use the “unconditional-within-period” model characterised by (3) and (2) for estimation of θkj

in the
conditional model (1). The estimate is unbiased in the linear case where g() is the identity function. In
the logistic regression model, this estimate is asymptotically unbiased - just like the point estimates from a
correctly specified model. Regarding precision, however, it may be advantageous to estimate f(tj) to refine
the estimate of θkj

.
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Regarding variance estimation, the asymptotic unbiasedness of the parameter estimates in the logistic
regression model carries over to the variance estimates, since these are also functions of the estimated response
probabilities. In the linear model, where the variance is modelled by an additional separate parameter,
however, biases in variance estimation can arise if the residual variance changes in time and the randomisation
ratio between control and test treatment changes in time. Additional remarks on these topics can be found
in the next section.

D Impact of time trends on the variance estimation in the linear
model

We assume that within period (P = q), the responses follow the model yj |T = tj , P = q ∼ N(f(tj) +
θkj

, σ2
y·T (tj)). Hence, the variance is considered a function of time. We also assume that within period q, the

time tj at which patient j’s response yj is observed, is an independent, identically distributed (i.i.d.) sample
from Tq. This is fulfilled if patients randomly enter the study at any point in time during the recruitment
period and are randomized to a treatment. The distribution of Tq does not depend on the treatment kj , but
otherwise we leave it as unspecified. In particular, it might be different for P = 1 and P = 2. We have

E(yj |P = q) = E(E(yj |Tq, P = q)) = E(f(Tq)) + θkj =: µq + θkj

and

var(yj |P = q) = var(E(yj |Tq, P = q)) + E(var(yj |Tq, P = q)) =

var(f(Tq) + θkj
) + E(σ2

y·T (Tq)) = var(f(Tq)) + E
(
σ2
y·T (Tq)

)
.

Thus, with σ2
q = var(f(Tq)) + E

(
σ2
y·T (Tq)

)
, we have that

yj |P = q ∼ N(µq + θkj
, σ2

q ).

Within period q, the condition that yj |P = q are i.i.d. normally distributed is met. For P = 1 and P = 2,
however, we have different variances. This can be addressed by fitting the model yj |P = q ∼ N(µq + θkj

, σ2
q )

with µq = µ0 + ν · I(P = 2).

The (ML- or REML-)estimate θ̂k from this model will fulfill that
√
n(θ̂k − θ) is asymptotically normal. Hence,

we see that the step model which accounts for the time trend by introducing a period effect can also account
for time-dependent changes in the variance by likewise modeling variance with a step function for period.
Regarding precision of the estimate, there will be a loss relative to knowledge of f(·): If we know f(·), then
by conditioning on the observed tj , we can eliminate var(f(Tq)) from σ2

q .
A curious by-product of the above consideration is that we do not need to know σ2

y·T (tj) either. In practice,

it might often be assumed that this does not depend on tj . If we know that σ2
y·T (tj) = σ2

y·T and also know

f(·), then σ2 = σ2
q = σ2

y·T arises. If we do not know f(·), however, the assumption σ2
y·T (tj) = σ2

y·T does not

prevent σ2
q from being different for q = 1 and q = 2, so we might as well relax this assumption.

Let us now consider the case where it is (possibly erroneously) assumed that the residual variance is the same
in the two periods. Hence, we have stochastically independent observations yj ∼ N

(
x′
jθ, σ

2
j

)
, j = 1, . . . , n.

For the sake of estimation, it is assumed that σ2
j = σ2, but in reality, they might be different, e.g. depend on

period of recruitment.
Let X = (x1, . . . ,xn)

′ be the n× p-design matrix. We estimate θ by θ̂ = (X′X)
−1

X′y such that

θ̂ ∼ N
(
θ, (X′X)

−1
X′ΣX (X′X)

−1
)

where Σ = Diag(σ2
j )j=1,...,n. The residual error variance is estimated by

s2 =
1

n
y′

(
In −X (X′X)

−1
X′

)
y =

1

n

n∑
j=1

(
yj − x′

j θ̂
)2

.

5



If n → ∞, the residuals yj − x′
j θ̂ become asymptotically stochastically independent with variance σ2

j and

hence s2 converges to 1
n

∑n
j=1 σ

2
j =: σ̄2.

Assume now that we want to test a hypothesis H0 : h′θ = 0. We use

t =
h′θ̂√

s2 · h′ (X′X)
−1

h
.

Since the true variance of h′θ̂ is h′ (X′X)
−1

X′ΣX (X′X)
−1

h, t ∼ N(0, 1) holds asymptotically under H0 if

σ̄2 · h′ (X′X)
−1

h = h′ (X′X)
−1

X′ΣX (X′X)
−1

h. (4)

Hence, if we are able to find a parametrization of the model in which we show that

X′ΣX = σ̄2 ·X′X, (5)

then t ∼ N(0, 1) holds asymptotically under H0.
Since Σ is a diagonal matrix, we have X′ΣX =

∑n
j=1 σ

2
j · xjx

′
j and X′X =

∑n
j=1 xjx

′
j . A simple example

where this holds is the following: Assume a two-group comparison H0 : µ1 − µ0 = 0. Then

X =

(
1n0 0n0

0n1
1n1

)
.

Furthermore, xjx
′
j =

(
1 0
0 0

)
for a patient in group 0 and xjx

′
j =

(
0 0
0 1

)
for a patient in group 1.

Thus, X′X =

(
n0 0
0 n1

)
and

X′ΣX =
(
σ2
1 + . . .+ σ2

n0

)( 1 0
0 0

)
+

(
σ2
n0+1 + . . .+ σ2

n

)( 0 0
0 1

)
.

Hence, X′ΣX = σ̄2X′X if

(σ2
1 + . . .+ σ2

n0
)/n0 =

(
σ2
n0+1 + . . .+ σ2

n

)
/n1 = σ̄2.

This example corresponds to the intuition that if we want to compare the means of two groups and these
groups share the same average variance, then the t-test defined by t asymptotically keeps the type I error.
From this consideration, it is also clear that examples where equation (5) does not hold can be constructed,
e.g. if the majority of observations on treatment 0 is from period 1, the majority of observations from
treatment 1 is from period 2 and the variance is larger in period 2 than in period 1.

E Results of the simulation study

All simulations were carried out using 100,000 replications per scenario. At each iteration, all models were
fitted to the same simulated datasets. This explains common patterns regarding the smoothness of the
estimates with respect to time trends (see, for instance, Figure S6).

E.1 Continuous endpoints

In what follows, we present additional results for continuous endpoints in the presence of time trends, which
are either equal across all arms (Section E.1.1), or equal in the control group and treatment 2 but different in
treatment 1 (Section E.1.2). We consider the time trend’s patterns: linear, step-wise and inverted-U. For the
inverted-U trend, we consider three different settings depending on the point at which the trend changes
from positive to negative. This point can be either in the middle of period 1 (Np = 125), between the two
periods (Np = 250) or in the middle of period 2 (Np = 500).
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E.1.1 Equal time trends

Figure S1: Type I error rate and power of rejecting H02 for continuous endpoints in the presence of equal
linear, step-wise and inverted-U time trends across arms with respect to the strength of the time trend
(λ = λk, k = 0, 1, 2) and according to the model used. Note that some lines overlap, e.g., ALLTC-Step and
the separate approach are overlapping in the figures of the first row; ALLTCI-Step, TC-Step and the separate
approach are overlapping in the figures of the second row.
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Figure S2: Bias of the treatment effect estimators (difference in means between control arm and treatment 2)
for continuous endpoints in the presence of equal linear, step-wise and inverted-U time trends across arms
with respect to the strength of the time trend (λ = λk, k = 0, 1, 2) and according to the model used.

8



Figure S3: Root mean squared error of the treatment effect estimators (difference in means between control
arm and treatment 2) for continuous endpoints in the presence of equal linear, step-wise and inverted-U time
trends across arms with respect to the strength of the time trend (λ = λk, k = 0, 1, 2) and according to the
model used.
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E.1.2 Different time trends

Figure S4: Type I error rate and power of rejecting H02 for continuous endpoints in the presence of different
linear, step-wise and inverted-U time trends (for λ0 = λ2 = 0.1) with respect to the strength of the time trend
in treatment arm 1 (λ1) and according to the model used. Note that some lines overlap, e.g., ALLTCI-Step,
TC-Step and the separate approach are overlapping in the figures of the second row.
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Figure S5: Bias of the treatment effect estimators (difference in means between control arm and treatment
2) for continuous endpoints in the presence of different linear, step-wise and inverted-U time trends (for
λ0 = λ2 = 0.1) with respect to the strength of the time trend in treatment arm 1 (λ1) and according to the
model used.
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Figure S6: Root mean squared error of the treatment effect estimators (difference in means between control
arm and treatment 2) for continuous endpoints in the presence of different linear, step-wise and inverted-U
time trends (for λ0 = λ2 = 0.1) with respect to the strength of the time trend in treatment arm 1 (λ1) and
according to the model used.

E.2 Binary endpoints

Next, we present additional results for binary endpoints in the presence of time trends. As before, time
trends can be either equal across all arms (Section E.2.1), or equal in the control group and treatment 2 but
different in treatment 1 (Section E.2.2). We consider linear, step-wise and inverted-U time trend’s patterns.
As before, for the inverted-U trend, the trend switches in the middle of period 1 (Np = 125), between the two
periods (Np = 250) or in the middle of period 2 (Np = 500).
For scenarios with different time trends, we considered both, positive and negative trends for the control
arm and treatment 2. Here, λ0 = λ2 were chosen in order to achieve 5% drop (λ0 = λ2 < 0) or increase
(λ0 = λ2 > 0) in the response rate in the control arm from period 1 to period 2. Results for scenarios with
positive time trend in the control and treatment 2 are shown in Figures S10, S12, S14 and S15. For scenarios
with negative time trends in the control and treatment 2, the results are presented in Figures S11 and S13.
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E.2.1 Equal time trends

Figure S7: Type I error rate and power of rejecting H02 for binary endpoints in the presence of equal linear,
step-wise and inverted-U time trends across arms with respect to the strength of the time trend (λ = λk,
k = 0, 1, 2) and according to the model used. Note that some lines overlap, e.g., ALLTC-Step and the separate
approach are overlapping in the figures of the first two rows.
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Figure S8: Bias of the treatment effect estimators (log(OR2)) for binary endpoints in the presence of equal
linear, step-wise and inverted-U time trends across arms with respect to the strength of the time trend
(λ = λk, k = 0, 1, 2) and according to the model used.

14



Figure S9: Root mean squared error of the treatment effect estimators (log(OR2)) for binary endpoints in
the presence of equal linear, step-wise and inverted-U time trends across arms with respect to the strength of
the time trend (λ = λk, k = 0, 1, 2) and according to the model used.
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E.2.2 Different time trends

Figure S10: Type I error rate and power of rejecting H02 for binary endpoints in the presence of different
step-wise time trends when there is a positive time trend in the control (λ0 = λ2 > 0 and varying λ1) with
respect to the response rate in treatment arm 1 in the second period, and depending on the model used.
Note that some lines overlap, e.g., ALLTCI-Step, TC-Step and the separate approach are overlapping in the
figures of the first and second rows.
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Figure S11: Type I error rate and power of rejecting H02 for binary endpoints in the presence of step-wise
time trends when there is a negative time trend in the control (λ0 = λ2 < 0 and varying λ1) with respect to
the response rate in treatment arm 1 in the second period, and depending on the model used. Note that
some lines overlap, e.g., ALLTCI-Step, TC-Step and the separate approach are overlapping in the figures of
the first and second rows.
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Figure S12: Type I error rate and power of rejecting H02 for binary endpoints in the presence of different
linear, step-wise and inverted-U time trends when there is a positive time trend in the control (λ0 = λ2 > 0)
with respect to the strength of the time trend in treatment arm 1 (λ1) and according to the model used.
Note that some lines overlap, e.g., ALLTCI-Step, TC-Step and the separate approach are overlapping in the
figures of the first and second rows.
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Figure S13: Type I error rate and power of rejecting H02 for binary endpoints in the presence of linear,
step-wise and inverted-U time trends when there is a negative time trend in the control (λ0 = λ2 < 0) with
respect to the strength of the time trend in treatment arm 1 (λ1) and according to the model used. Note that
some lines overlap, e.g., ALLTCI-Step, TC-Step and the separate approach are overlapping in the figures of
the first and second rows.
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Figure S14: Bias of the treatment effect estimators (log(OR2)) for binary endpoints in the presence of linear,
step-wise and inverted-U time trends when there is a positive time trend in the control (λ0 = λ2 > 0) with
respect to the strength of the time trend in treatment arm 1 (λ1) and according to the model used.
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Figure S15: Root mean squared error of the treatment effect estimators (log(OR2)) for binary endpoints in
the presence of linear, step-wise and inverted-U time trends when there is a positive time trend in the control
(λ0 = λ2 > 0) with respect to the strength of the time trend in treatment arm 1 (λ1) and according to the
model used.

F Additional simulations

F.1 Comparison of randomization procedures and patient entry time schemes

In this section, we compare different randomization procedures through simulations and discuss their role
when incorporating non-concurrent controls. In particular, we consider two randomization procedures, simple
randomization and block randomization [1], and study their impact on the type I error rate. In addition, we
evaluate the impact of patient entry times when these are random rather than deterministic as considered in
the article.
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F.1.1 Data generation

We simulated data of a two-period platform trial as described in Section 2 of the paper. In this case, however,
we assumed that time trends are equal across groups and additive on the model scale such that the data are
generated according to the model:

g (E(Yj)) = η0 +
∑
k=1,2

θk · I(kj = k) + f(tj), (6)

where Yj , g(), η0 and θkj
refer to the continuous or binary response, the link function (identity and logit

functions for continuous or binary responses, respectively), the control response and treatment effects,
respectively.
In this section, we considered a scenario in which there is no trend in the first period and the trend starts in
the second period and is linear. Specifically, the time trend f(tj) is assumed to have the following pattern:

f(tj) =

{
λ

tj−1
N−1 j > N1

0 j ≤ N1,
(7)

where N1 denotes the sample size in the first period and N is the total sample size in the trial, so that the
examined pattern corresponds to no time trend in the first period and linear time trend of strength λ for all
arms in the second period. Cases with moderate (λ = 0.15) and extreme (λ = 5) strengths of the time trend
are examined.
For the patient entry times tj , two options are discussed:

• deterministic entry times: tj = j

• random entry times: tj ∼ U(0, N1/N) in the first period and tj ∼ U(N1/N, 1) in the second period

For deterministic entry times, the order of patients’ entry in the trial is the same as that of the randomization
sequence. In every unit of time, a patient enters into the platform. Thus, patients’ index is equivalent to
time at which patients enter in the study. Random entry times are uniformly distributed in both periods.
For comparative purposes, random times are multiplied by the total number of sample size N to achieve the
same scale as in the case with deterministic entry times.
Furthermore, we assumed that the null hypothesis holds for treatment arm 2 (i.e. θ2 = 0 and OR2 = 1). For
continuous endpoints, we used control response η0 = 0 and effect size for treatment 1 θ1 = 0.25. For binary
endpoints, the control response rate was set to 0.3 and odds ratio for treatment 1 to 1.8. We considered a
significance level α = 0.025 to test the null hypothesis for treatment 2 against the one-sided alternative.
The ALLTC-Step model, i.e. model using all treatment data and control and adjusting for time by a step
function, is used for the evaluation of the data. Each scenario was replicated 100.000 times.

F.1.2 Randomization procedures

Simple randomization per period. The randomization procedure corresponds to the random allocation
rule in which the sample size per arm in each period is prespecified. Thus, in each period, we take a random
sample of the possible treatment allocation combinations given the sample sizes per arm and per period. So
that this sequence represents the treatment allocation for each patient.

Block randomization. We considered the randomization procedure to be block randomization. Patients are
assigned to arms following blocked randomization per period. In the first period (in which we have allocation
ratio 1:1), we consider a block size of 4, while in the second period (in which we have 1:1:2) a block size of 12.

F.1.3 Results

Simple randomization per period. For continuous endpoints, simple randomization maintains the type
I error at 2.5% in the presence of moderate time trends for both, deterministic and random entry times.
However, if the time trends have extreme strength, the type I error rate is inflated, reaching an empirical
level of 3.3% for deterministic and random entry times.
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In the setting with binary endpoints, the type I error rate is maintained, despite the strength of the time
trend. That is, even when the time trend is extreme and regardless of whether the times were random or
deterministic.

Block randomization. Similarly as in previous scenarios, for continuous endpoints when using block
randomization, the type I error rate is maintained at 2.5% for fixed and random entry times whenever the
time trend is moderate. In the presence of extreme time trends, however, this randomization procedure leads
to strictly conservative results and empirical type I error rate of 0.7% for both, fixed and random entry times.
For binary endpoints, the type I error rate is again maintained at 2.5% for moderate and extreme time trend
strengths and deterministic and random entry times.

F.2 Platform trials with three periods

In this section, we investigate the performance of the proposed models (1) and (2) in a trial with two treatment
arms and a shared control in which arm 2 enters when the trial is ongoing. However, unlike the trial design
reported in the article, here arm 1 finishes before arm 2 does. Hence, in this section, the platform trial is
divided into three periods (instead of two periods as in the paper), where treatment arm 1 is active in the
first 2 periods and treatment arm 2 in periods 2 and 3 (see Figure S16 for an illustration).

Time

Control arm

Arm 1

Arm 2

Period 1 Period 2 Period 3

Figure S16: Scheme of a platform trial with 3 periods. Non-concurrent controls for arm 2 are shown in light
grey.

F.2.1 Data generation

We simulated data using the generating model (4) in the paper and following the same procedure than the
one described in section F.1.1. We assumed linear time trend pattern, with the trend function f(·) given by:

f(j) = λkj

(j − 1)

(N − 1)

We investigated cases with equal strength of the time trend across all arms (i.e., λ = λ0 = λ1 = λ2) as well as
cases where the time trend in arm 1 differs (i.e., λ0 = λ2 ̸= λ1).
As in the main paper, we assumed that treatment 2 joins the platform after 1/2 of the patients have been
allocated to treatment arm 1 and considered equal sample sizes n in both treatment arms. In the newly
considered scenarios, however, we used allocation ratio 1:1:1 in each period, thus treatment 1 leaves the trial
earlier. Note that this results in larger sample size in the control group, as it is present in all 3 periods.
Patients were assigned to arms according to block randomisation with block sizes of 2 · (#active arms + 1) in
each period.

23



For continuous endpoints we assumed control response η0 = 0, treatment effect for arm 1 of θ1 = 0.25 and
treatment effects for arm 2 of θ2 = 0 or θ2 = 0.25 under the null and alternative hypotheses, respectively. In
scenarios with binary endpoints, control response rate of η0 = 0.7 and odds ratio for treatment 1 of 1.8 were
used in all cases. Odds ratio for treatment 2 was set to 1 under the null hypothesis and to 1.8 under the
alternative. We considered the sample size per treatment arm of n = 210, as this results in 80% power for
the pooled analysis to detect the difference between the control group and treatment 2, assuming the given
treatment effects, at 2.5% one-sided significance level in the case of no time trend.

F.2.2 Results

The results of these additional simulations coincide with those presented in the main paper. In particular,
under equal time trends, the power achieved using model (1) is higher than the power using model (2) and the
separate approach, while the type I error is still controlled. If the time trend in treatment arm 1 differs from
that in treatment arm 2 and control, the type I error rate is no longer maintained at 0.025. The type I error
rate inflation, however, is less pronounced in the newly considered scenarios with three periods. This results
from the fact that as there is now less overlap between the two treatments, treatment arm 1 contributes less
to the estimation of the time trend and this estimation is then less affected by the different time trend in this
arm.
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Figure S17: Type I error rate and power of rejecting H02 for continuous endpoints in the presence of different
linear time trends (for λ0 = λ2 = 0.1) with respect to the strength of the time trend in treatment arm 1 (λ1)
and according to the model used.
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Figure S18: Type I error rate and power of rejecting H02 for binary endpoints in the presence of different
linear time trends when there is a positive time trend in the control (λ0 = λ2 > 0) with respect to the
strength of the time trend in treatment arm 1 (λ1) and according to the model used.
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