Technical details for the ML techniques

RSFCR

For RSFCR [1,2], the randomForestSRC package of the R programming language was used [3]. Tun-
ing of the hyperparameters was done using grid search. The choice of the hyperparameters and their
range (grid search) was provided based on recommendations by the authors of randomForestSRC [4].
Parameters tuned were mtry the number of candidate variables examined at each split point (range 1
- 5) and nodesize the average number of observations in the terminal nodes across the forest (range
10 - 30). Parameter ntree the number of bootstrapped trees grown was set to 1000 trees for a stable
performance. Parameter nsplit the number of split points at which an X variable is tested using the
“logrank” splitting rule (cause of interest was disease-progression) was set to 2 to avoid bias towards
the continuous predictive factors [2].

In general, parameters ntree and mtry are the most fundamental for RSFCR. The parameter ntree
modulates the consistency of the forest’s performance and mtry controls an important part of random-
ness during the growth of decision trees. Parameter nsplit with nsplit > 0 can be used to trigger
a randomised selection of exactly nsplit points for each of the mtry variables within a node h. Last,
parameter nodesize plays an important role in the topology of the trees as it controls the average
node size of the forest. Large values in nodesize parameter will essentially force the forest to under-
grow whereas small values will lead each tree to keep growing on with more and more noisy variables
being selected. The best combination of parameters was determined based on the error of the forests
on the test set (of the training datasets) defined as £ = 1 — C, where C is an adaptation to Harrell’s
concordance index to the competing risks setting [5, 6].

PLANNCR

PLANNCR is an extension of PLANN [7] and standard neural networks for multiple classification
resorting to the multinomial likelihood. A data transformation to longitudinal format was required.
The time interval was added next to the other input features to estimate smoothed conditional event
probabilities for each event (alive/censored, disease progression, or death). Variables were presented
in dummy coding - categorical variables as indicators and continuous variables standardised. Here,
without loss of generality, each subject was repeated for 1 up to 11 time intervals denoting years since
surgery. The last interval included survival times longer than 10 years (subsequent intervals were not
of interest). Tuning of the hyper-parameters was done using grid search. The best combination of the
parameters was determined on the test set of the training datasets based on either the time-dependent
area under the curve (AUC) at 5 years, or the Brier score at 5 years (time-point of major clinical interest
for disease progression of the eSTS patients) [8, 9].



PLANNCR original

For PLANNCR original, the nnet package [10] of the R programming language was used. The choice
of hyperparameters and their range (for the grid search) were based on reasoning from the original ar-
ticle by Biganzoli ef al. [11]. Optimization was done via the BFGS method (quasi-Newton algorithm)
of optim R function. Parameters tuned were 1) size the number of nodes (units) in the hidden layer
which determines the number of weights (values 2, 3, 4, - - -, 14) and ii) decay a regularization tech-
nique applied to the error (loss) function which penalizes large weight values to avoid overfitting as
E* = E+)\>" w?(values 0.01, 0.05,0.1,0.2,0.3, 0.4 and 0.5). Having 15 inputs in total (14 prognos-
tic variable levels in dummy coding + time interval variable) the optimal value for size is somewhere
in the range 2-14.

PLANNCR extended

For PLANNCR extended, model tuning was performed in R with the package keras [12], which is
an interface for the original state-of-the-art neural network library written in Python programming
language. keras runs on top of tensorflow [13], which is a symbolic maths library used for ML.
Two of the main advantages of this package are that it allows the use of distributed training of deep
learning models on clusters of graphic processing units and the specification of many building blocks
such as activation functions, layers, objectives, optimisers. Optimization was done with the stochastic
gradient descent algorithm of keras (works better for shallow neural networks). To narrow down
the grid of point combinations, search for training data was performed on a 5-D space of some of the
most fundamental hyper-parameters. Those are nodesize the size of nodes in the hidden layer (values
2,4,6,---,14), dropout rate that randomly selects the amount of nodes to be dropped-out with a
given probability (values 0.1, 0.2 or 0.4), learning rate which is the step size of weight iteration
(values 0.1, 0.2 or 0.4), momentum which helps to accelerate gradient vectors (values 0.8 or 0.9) and
weak class weight that defines the weight of disease progression or death (values 1 or 1.25).

Nodesize defines the number of weights of the network and consequently the amount of its complex-
ity. Having 15 inputs in total for the main analyses (14 prognostic variable levels in dummy coding
+ 1 variable for yearly time intervals), the optimal nodesize was somewhere in the range 2 - 14.
Dropout rate is a technique used to control over-fitting [14]. Regarding the rest of the parameters,
learning rate adjusts how fast the stochastic gradient descent iterative method uses stochastic ap-
proximation. momentum can accelerate the stochastic gradient vectors in the right directions and weak
class weight can be used for re-weighting unbalanced classes (a small re-weighting adjustment was
used). Additionally, we used early stopping to prevent over-fitting (3 epochs tolerance). We specified
20 training epochs and terminated training once the performance stopped improving on the validation
set. Overall, training PLANNCR extended was more computationally intensive than PLANNCR orig-
inal because of the increased number of hyperparameters. Moreover, it is worth mentioning that the
implementation of PLANNCR extended within a modern library does not necessarily imply a better

performance than PLANNCR original regarding the numerical optimization.


https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/optim
https://keras.io/api/optimizers/sgd/
https://keras.io/api/optimizers/sgd/
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