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Supplementary Materials 

1. Appendix 1: Data Pre-Processing 
The main steps of data pre-processing can be grouped as modifying the data structure and variable 
encoding. The goal of modifying the data structure is combining the different original data tables into a 
format that is suitable for the RNN. In contrast, variable encoding aims to format each variable in the 
dataset in a manner that is suitable for the RNN.  

1.1 Modifying Data Structure 
The original structure of the data provided consisted of multiple forms linked by a single subject 
identifier where each form consists of a single type of health information. The goal of modifying the data 
structure is to transform these tables into a consistent representation for our machine learning model. 
We group data based on whether they are longitudinal events that occur over time, compared to 
baseline characteristics.  

In this dataset the baseline characteristics include the age, sex, and baseline comorbidity index for the 
individual. Additionally, the relative date of the individual’s first observation is included as a baseline 
characteristic. These measures are then combined in a single dataset 𝐵𝐵𝐵𝐵 that has the structure in Table 
1. 

 

   Encrypted 
PHN 

Age Sex Comorbidity Relative 
Date of 
First Obs 

   10000001 38 F 0 100 

   10000002 22 M 0 325 

 𝐵𝐵𝐵𝐵 = [𝑛𝑛,𝐵𝐵]  10000003 70 F 1 52 

   10000004 55 F 0 89 

   10000005 63 M 3 600 

Table 1: Structure of baseline characteristic (BC) data. This produces a table of size 𝐵𝐵𝐵𝐵 = [𝑛𝑛,𝐵𝐵], where 
𝑛𝑛 corresponds to the number of individuals in the dataset and 𝐵𝐵 corresponds to the number of 

baseline characteristics present in the data. In this case 𝐵𝐵 = 4. 

 

Longitudinal events include prescriptions, physician visits, hospitalizations, emergency department visits, 
and. We joined these observations from different data tables by assigning event type labels and associated 
attributes for each event type. For example, all observations from the hospitalization form are considered 
the event ‘hospitalization’ and have measures for the attributes: length of stay and resource intensity 
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weight.  Given that not every attribute is measured for every event type, this yields a sparse data frame 
with many missing values for event attributes. Table 2 illustrates the structure of the joined data frame. 
This data frame captures all events that occur throughout the study period for each patient.  

All original data tables correspond to a single event type (e.g., the hospitalization form yield 
‘hospitalization’ events), except for the drug_data and MD claims forms. These two forms have 47 million 
and 29 million observations respectively, which constitutes 83% of the total number of event 
observations. To prevent strong imbalance between different event types, the drug_data form was split 
into 4 event types: morphine dispensations, oxycodone dispensations, antidepressant dispensations, and 
other prescription dispensations while the MD claims form was split into 2 event types: general 
practitioner visits and specialist visits. This split leverages the existing features in the data. 

After joining observations from the different transactional tables, relative dates for each event were 
recoded as time between events or sojourn time. This transformation was conducted as longitudinal 
health data is often utilized for time to events type analyses, and therefore we prioritized modelling the 
time between events rather than the relative dates of observations.  

One important characteristic of this dataset is the wide range in the number of observations associated 
with each individual. Summarized as percentiles in Table 3, we can see that most patients have dozens or 
hundreds of events recorded, while very few (<5% of patients) have between 1,000 and 36,774 events 
recorded. This great range in number of events is something we are interested in preserving, that also 
may be associated with the features of the data itself (i.e. individuals with more observations may be 
sicker so they are more likely to have ongoing prescriptions, chronic conditions, etc.). For simplicity, 
patients with >1000 observations were omitted from the dataset, which is a cut at the 95th percentile of 
event counts as shown in Table 3. This still provides a considerable amount of variability in the number of 
events. 
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Encrypted 
PHN 

  

Label Sojourn 
Time 

Amt 
Dispensed 

Duration 
of RX 

ICD10 
Diagnostic 
Code 

RIW LOS Specialist 
Type 

ICD9 
Diagnostic 
Code 

Lab 
Test 
Name 

Lab Test 
Results 

1000001 GP Visit 0 NA NA NA NA NA NA 311 NA NA 

1000001 Other RX 0 10 7 NA NA NA NA NA NA NA 

1000001 Antidep RX 0 100 60 NA NA NA NA NA NA NA 

1000001 MD Visit 62 NA NA NA NA NA ORTH 724.5 NA NA 

1000001 Morphine RX 0 30 60 NA NA NA NA NA NA NA 

1000001 Lab Test 2 NA NA NA NA NA NA NA GFR 85 

1000001 GPVisit 180 NA NA NA NA NA NA 724.5 NA NA 

1000001 Morphine RX 0 60 60 NA NA NA NA NA NA NA 

1000001 ED Visit 5 NA NA N20.0 0.001 NA NA NA NA NA 

1000001 Hospitalization 10 NA NA I75.81 0.05 7 NA NA NA NA 

1000001 Oxycodone RX 0 120 7 NA NA NA NA NA NA NA 

1000001 Death 7 NA NA I75.81 NA NA NA NA NA NA 

1000001 Last Obs 0 NA NA NA NA NA NA NA NA NA 

Table 2: Structure of joined longitudinal dataset. This snapshot shows the structure of data for a single patient up to their death. NA values 
indicate not applicable or missing values. 



4/12  
 

 

Percentile 0%     5%    10%  
  

15%  
  

20%  
  

25%  
  

30% 35%  
  

40%  
  

45%    50%  
  

# Obs 2 25 40 54 69 84 99 116 134 153 175 

Percentile 55%    60%  
  

65%  
  

70%  
  

75%  
  

80%  
  

85% 90%  
  

95%   100% 

 

# Obs 199 227 260 299 349 414 507 660 997 36774 

Table 3: Percentiles for the number of events per patient. 

 

1.2 Variable Encoding 
For the formatted datasets described in Table 1 and Table 2 to be suitable for the RNN, feature encoding 
must occur. Feature encoding helps ensure that all features the model is attempting to learn are on 
similar scales. When minimizing error in prediction, features with larger ranges and thus larger 
prediction errors will be prioritized during training. This is not a desirable trait as we would like each 
feature to be prioritized equally unless we specify otherwise. For the LSTM models we are applying, in 
order to make the training process easier, all features are discretized.  

The kind of feature encoding performed depends on the format of the original variable. In this dataset 
the following transformation were performed: 

• Categorical variables with ≤100 levels: (e.g., lab test name, specialist type, event labels) were 
mapped 1 to 1 from the text categories to the integers 1, 2, 3, etc. 

• Continuous variables: (e.g., sojourn time, dispensed amount, prescription duration, length of 
stay, resource intensity weight, lab test result) were binned and then mapped to the integers 1, 
2, 3, etc. 

• Categorical variables with >100 levels: (e.g., ICD9 and ICD10 diagnostic codes) were formatted 
based on prevalence in the data. Levels with many observations were kept in their original 
format, while levels that were less common were generalized to the chapter level. 

• Baseline characteristics: were left in their original format, except for date of first observation. 
Date of first observation was scaled based on the study period (i.e., if the first observation for an 
individual was recorded on day 200, this was transformed using the 7 year, or 2557 days, study 
period to be 200

2557
= 0.078). 
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2. Appendix 2: Random Cohort Utility Assessment 
In this appendix, we describe the random cohort utility assessment or fuzzy SQL tool in detail. The data 
types handled by the fuzzy SQL tool are shown in 2.1. Then more details about the generated queries 
are given in 2.2 and the utility metrics can be found in 2.3. 

2.1 The data types 
To ensure the validity of the SQL select statement as interpreted by the database engine, Fuzzy SQL 
makes a distinction among three basic data types, namely: Categorical, Continuous, and Date. 
Accordingly, if a dataset includes a variable with a different data type, it will be mapped to the proper 
type as per the table below: 

Input Data Type Output Data Type 

'qualitative', 'categorical', 'nominal', 'discrete', 'ordinal', 'dichotomous', 
'TEXT', 'INTEGER' 

'categorical' 

'quantitative', 'continuous', 'interval', 'ratio', 'REAL' 'continuous' 

'date', 'time', 'datetime' 'date' 

 

The distinction arises from their intrinsic properties as summarized in the following table: 

Property 'categorical' 'continuous' 'date' 

Can be used to aggregate data across 
it 

Yes No No 

Can be used with the aggregate 
functions: SUM, AVG, MIN and MAX  

No Yes No 

Can be used with the 'IN' operation Yes No Yes 

Can be used with the 'BETWEEN' 
operation 

No Yes Yes 

 

The three basic data types will be equally used for the rest of the query operations.  

2.2 Data Query Templates 
Without loss of generality, and to simplify the mathematical constructs, we herein ignore the logical 
operation 'NOT' and the value comparison operations BETWEEN, LIKE, and IN. We further consider that 
the same set of value comparison operations is applicable to all types of variables. In practice, a 
distinction in their applicability is made and all the aforementioned operations are considered. Further, 
please note that, for our purpose, the terms categorical and nominal are used interchangeably. Define: 
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• 𝒯𝒯𝑟𝑟 : Database table for real data. 
• 𝒯𝒯𝑠𝑠: Database table for synthetic data 
• 𝑁𝑁: The number of records in 𝒯𝒯𝑟𝑟. 
• 𝔸𝔸𝑛𝑛 = �𝐴𝐴1𝑛𝑛,𝐴𝐴2𝑛𝑛,⋯ ,𝐴𝐴|𝔸𝔸𝑛𝑛|

𝑛𝑛 � is the set of nominal variables in both 𝒯𝒯𝑟𝑟 and 𝒯𝒯𝑠𝑠 where |𝔸𝔸𝑛𝑛| indicates 
the number of these variables. 

• 𝔸𝔸𝑐𝑐 = {𝐴𝐴1𝑐𝑐 ,𝐴𝐴2𝑐𝑐 ,⋯ ,𝐴𝐴|𝔸𝔸𝑐𝑐|
𝑐𝑐 } is the set of continuous variables in both 𝒯𝒯𝑟𝑟 and 𝒯𝒯𝑠𝑠. 

• 𝔸𝔸𝑑𝑑 = {𝐴𝐴1𝑑𝑑 ,𝐴𝐴2𝑑𝑑 ,⋯ ,𝐴𝐴|𝔸𝔸𝑑𝑑|
𝑑𝑑 } is the set of date variables in both 𝒯𝒯𝑟𝑟 and 𝒯𝒯𝑠𝑠. 

• For any member 𝐴𝐴𝑗𝑗 in the above sets we denote 𝑉𝑉(𝐴𝐴𝑗𝑗) as the set of all values that 𝐴𝐴𝑗𝑗 may take. 
The length of 𝑉𝑉(𝐴𝐴𝑗𝑗) is |𝑉𝑉(𝐴𝐴𝑗𝑗)| ≤ 𝑁𝑁. 

We further define various operations: 

• 𝐿𝐿𝐿𝐿 = {𝐴𝐴𝑁𝑁𝐴𝐴,𝐿𝐿𝑂𝑂} is the set of logical operations. 
• 𝐵𝐵𝐿𝐿 = {=,≠, <,≤, >,≥} is the set of value comparison operations. 
• 𝐴𝐴𝐴𝐴 = {𝑆𝑆𝑆𝑆𝑆𝑆,𝐴𝐴𝑉𝑉𝐴𝐴,𝑆𝑆𝑀𝑀𝑁𝑁,𝑆𝑆𝐴𝐴𝑀𝑀} is the set of aggregate functions. 

Random samples are drawn from the above sets to construct the three major queries defined below. 
The basic sampling functions can be defined as: 

𝑓𝑓𝑠𝑠: 𝑆𝑆𝑚𝑚 → 𝑆𝑆𝑠𝑠 where 𝑓𝑓𝑠𝑠 is a sampling function that maps any set 𝑆𝑆𝑚𝑚 into a single element set 𝑆𝑆𝑠𝑠. For 
instance, the set 𝐴𝐴𝐴𝐴 may be mapped by 𝑓𝑓𝑠𝑠 into {𝐴𝐴𝑉𝑉𝐴𝐴} 

𝑓𝑓𝑚𝑚:𝑆𝑆𝑚𝑚1 → 𝑆𝑆𝑚𝑚2 where 𝑓𝑓𝑚𝑚 is a sampling function that maps any set 𝑆𝑆𝑚𝑚1 into a multiple element set 𝑆𝑆𝑚𝑚2. 
For instance, the set 𝔸𝔸𝑛𝑛 may be mapped by 𝑓𝑓𝑚𝑚 into �𝐴𝐴1𝑛𝑛,𝐴𝐴|𝔸𝔸𝑛𝑛|

𝑛𝑛 �. 

2.2.1 Aggregate Queries 
If 𝔸𝔸𝑐𝑐 = 𝜙𝜙, an aggregate query takes the form: 

 

SELECT 𝑓𝑓𝑚𝑚(𝔸𝔸𝑛𝑛),  COUNT(*) 
FROM  𝒯𝒯𝑟𝑟 
GROUP BY 𝑓𝑓𝑚𝑚(𝔸𝔸𝑛𝑛) 

 

However, if 𝔸𝔸𝑐𝑐 ≠ 𝜙𝜙, an aggregate query takes the form: 

 

SELECT  𝑓𝑓𝑚𝑚(𝔸𝔸𝑛𝑛),𝑓𝑓𝑠𝑠(𝐴𝐴𝐴𝐴)(𝑓𝑓𝑠𝑠(𝔸𝔸𝑐𝑐)), COUNT(*) 
FROM  𝒯𝒯𝑟𝑟 
GROUP BY 𝑓𝑓𝑚𝑚(𝔸𝔸𝑛𝑛) 

 

Similar queries are constructed for 𝒯𝒯𝓈𝓈. 

2.2.2 Filter Queries 
If 𝔸𝔸𝑐𝑐 = 𝜙𝜙, a filter query takes the form: 
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SELECT ∗ 
FROM  𝒯𝒯𝑟𝑟 
WHERE [𝑓𝑓𝑠𝑠(𝔸𝔸𝑛𝑛 ∪ 𝔸𝔸𝑐𝑐 ∪ 𝔸𝔸𝑑𝑑) 𝑓𝑓𝑠𝑠(𝐵𝐵𝐿𝐿) 𝑓𝑓𝑠𝑠(𝑉𝑉(𝑓𝑓𝑠𝑠(𝔸𝔸𝑛𝑛 ∪ 𝔸𝔸𝑐𝑐 ∪ 𝔸𝔸𝑑𝑑)))] 
  [𝑓𝑓𝑠𝑠(𝐿𝐿𝐿𝐿)] 
  [𝑓𝑓𝑠𝑠(𝔸𝔸𝑛𝑛 ∪ 𝔸𝔸𝑐𝑐 ∪ 𝔸𝔸𝑑𝑑) 𝑓𝑓𝑠𝑠(𝐵𝐵𝐿𝐿) 𝑓𝑓𝑠𝑠(𝑉𝑉(𝑓𝑓𝑠𝑠(𝔸𝔸𝑛𝑛 ∪ 𝔸𝔸𝑐𝑐 ∪ 𝔸𝔸𝑑𝑑)))] 
  [𝑓𝑓𝑠𝑠(𝐿𝐿𝐿𝐿)] 
  ⋯ 

 

The WHERE clause comprises basic expressions denoted by [ ]. Say if the sampled number of variables 
equals to 1 (i.e. |𝑓𝑓𝑚𝑚(𝔸𝔸𝑛𝑛 ∪ 𝔸𝔸𝑐𝑐 ∪ 𝔸𝔸𝑑𝑑)|=1), then the above expression will reduce to: 

 

SELECT ∗ 
FROM  𝒯𝒯𝑟𝑟 
WHERE (𝑓𝑓𝑠𝑠(𝔸𝔸𝑛𝑛 ∪ 𝔸𝔸𝑐𝑐 ∪ 𝔸𝔸𝑑𝑑) 𝑓𝑓𝑠𝑠(𝐵𝐵𝐿𝐿) 𝑓𝑓𝑠𝑠(𝑉𝑉(𝑓𝑓𝑠𝑠(𝔸𝔸𝑛𝑛 ∪ 𝔸𝔸𝑐𝑐 ∪ 𝔸𝔸𝑑𝑑))) 

 

 

If 𝔸𝔸𝑐𝑐 ≠ 𝜙𝜙, a filter query takes the form: 

 

SELECT 𝑓𝑓𝑠𝑠(𝐴𝐴𝐴𝐴)(𝑓𝑓𝑠𝑠(𝔸𝔸𝑐𝑐)), COUNT(*) 
FROM  𝒯𝒯𝑟𝑟 
WHERE [𝑓𝑓𝑠𝑠(𝔸𝔸𝑛𝑛 ∪ 𝔸𝔸𝑐𝑐 ∪ 𝔸𝔸𝑑𝑑) 𝑓𝑓𝑠𝑠(𝐵𝐵𝐿𝐿) 𝑓𝑓𝑠𝑠(𝑉𝑉(𝑓𝑓𝑠𝑠(𝔸𝔸𝑛𝑛 ∪ 𝔸𝔸𝑐𝑐 ∪ 𝔸𝔸𝑑𝑑)))] 
  [𝑓𝑓𝑠𝑠(𝐿𝐿𝐿𝐿)] 
  [𝑓𝑓𝑠𝑠(𝔸𝔸𝑛𝑛 ∪ 𝔸𝔸𝑐𝑐 ∪ 𝔸𝔸𝑑𝑑) 𝑓𝑓𝑠𝑠(𝐵𝐵𝐿𝐿) 𝑓𝑓𝑠𝑠(𝑉𝑉(𝑓𝑓𝑠𝑠(𝔸𝔸𝑛𝑛 ∪ 𝔸𝔸𝑐𝑐 ∪ 𝔸𝔸𝑑𝑑)))] 
  [𝑓𝑓𝑠𝑠(𝐿𝐿𝐿𝐿)] 
  ⋯ 

 

Similar queries are constructed for 𝒯𝒯𝓈𝓈. 

2.2.3 Filter-Aggregate Queries 
Filter-Aggregate queries are the most important for comparing real and synthetic datasets. The query is 
constructed by combining the above two forms. Hence, if 𝔸𝔸𝑐𝑐 = 𝜙𝜙, a filter-aggregate query takes the 
form: 

 

SELECT 𝑓𝑓𝑚𝑚(𝔸𝔸𝑛𝑛), COUNT(*) 
FROM  𝒯𝒯𝑟𝑟 
WHERE [𝑓𝑓𝑠𝑠(𝔸𝔸𝑛𝑛 ∪ 𝔸𝔸𝑐𝑐 ∪ 𝔸𝔸𝑑𝑑) 𝑓𝑓𝑠𝑠(𝐵𝐵𝐿𝐿) 𝑓𝑓𝑠𝑠(𝑉𝑉(𝑓𝑓𝑠𝑠(𝔸𝔸𝑛𝑛 ∪ 𝔸𝔸𝑐𝑐 ∪ 𝔸𝔸𝑑𝑑)))] 
  [𝑓𝑓𝑠𝑠(𝐿𝐿𝐿𝐿)] 
  [𝑓𝑓𝑠𝑠(𝔸𝔸𝑛𝑛 ∪ 𝔸𝔸𝑐𝑐 ∪ 𝔸𝔸𝑑𝑑) 𝑓𝑓𝑠𝑠(𝐵𝐵𝐿𝐿) 𝑓𝑓𝑠𝑠(𝑉𝑉(𝑓𝑓𝑠𝑠(𝔸𝔸𝑛𝑛 ∪ 𝔸𝔸𝑐𝑐 ∪ 𝔸𝔸𝑑𝑑)))] 
  [𝑓𝑓𝑠𝑠(𝐿𝐿𝐿𝐿)] 
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  ⋯ 
GROUP BY 𝑓𝑓𝑚𝑚(𝔸𝔸𝑛𝑛) 

 

and if 𝔸𝔸𝑐𝑐 ≠ 𝜙𝜙, a filter-aggregate query takes the form: 

 

SELECT 𝑓𝑓𝑚𝑚(𝔸𝔸𝑛𝑛),𝑓𝑓𝑠𝑠(𝐴𝐴𝐴𝐴)(𝑓𝑓𝑠𝑠(𝔸𝔸𝑐𝑐)), COUNT(*) 
FROM  𝒯𝒯𝑟𝑟 
WHERE [𝑓𝑓𝑠𝑠(𝔸𝔸𝑛𝑛 ∪ 𝔸𝔸𝑐𝑐 ∪ 𝔸𝔸𝑑𝑑) 𝑓𝑓𝑠𝑠(𝐵𝐵𝐿𝐿) 𝑓𝑓𝑠𝑠(𝑉𝑉(𝑓𝑓𝑠𝑠(𝔸𝔸𝑛𝑛 ∪ 𝔸𝔸𝑐𝑐 ∪ 𝔸𝔸𝑑𝑑)))] 
  [𝑓𝑓𝑠𝑠(𝐿𝐿𝐿𝐿)] 
  [𝑓𝑓𝑠𝑠(𝔸𝔸𝑛𝑛 ∪ 𝔸𝔸𝑐𝑐 ∪ 𝔸𝔸𝑑𝑑) 𝑓𝑓𝑠𝑠(𝐵𝐵𝐿𝐿) 𝑓𝑓𝑠𝑠(𝑉𝑉(𝑓𝑓𝑠𝑠(𝔸𝔸𝑛𝑛 ∪ 𝔸𝔸𝑐𝑐 ∪ 𝔸𝔸𝑑𝑑)))] 
  [𝑓𝑓𝑠𝑠(𝐿𝐿𝐿𝐿)] 
  ⋯ 
GROUP BY 𝑓𝑓𝑚𝑚(𝔸𝔸𝑛𝑛) 

 

Similar queries are constructed for 𝒯𝒯𝓈𝓈. 

2.3 Utility Metrics 
In the explanations below we use examples from the Adult datasets available from the UCI machine 
learning repository. 

2.3.1 Hellinger Distance for Datasets 
The Hellinger distance is used to measure the quality of synthetic data. First, we consider the calculation 
of the Hellinger distance between the real and the synthetic tabular datasets 𝒯𝒯𝑟𝑟 and 𝒯𝒯𝑠𝑠 respectively. 
Define: 

• 𝔸𝔸 = {𝐴𝐴1,⋯ ,𝐴𝐴𝑖𝑖 ,⋯ ,𝐴𝐴|𝔸𝔸|} is the set of nominal variables in both 𝒯𝒯𝑟𝑟 and 𝒯𝒯𝑠𝑠 where |𝔸𝔸| indicates 
the number of these variables. 

• 𝑜𝑜𝐴𝐴𝑖𝑖
𝑗𝑗  is the number of occurrences (i.e. counts) of the 𝑗𝑗𝑡𝑡ℎ class for the nominal variable 𝐴𝐴𝑖𝑖  in 𝒯𝒯𝑟𝑟.  

The discrete probability of the 𝑗𝑗𝑡𝑡ℎ class can be calculated as: 

𝑟𝑟𝐴𝐴𝑖𝑖
𝑗𝑗 =

𝑜𝑜𝐴𝐴𝑖𝑖
𝑗𝑗

∑ 𝑜𝑜𝐴𝐴𝑖𝑖
𝑗𝑗

∀𝑗𝑗
 

For instance, consider the nominal variable 𝐴𝐴1 = "income" with two classes '<=50k' and '>50k'. Then the 
first class may have 𝑜𝑜𝐴𝐴1

1 = 1200 occurrences and the second may have 𝑜𝑜𝐴𝐴1
2 = 2000 occurrences with 

discrete probabilities of 𝑟𝑟𝐴𝐴1
1 = 0.375 and 𝑟𝑟𝐴𝐴1

2 = 0.625 respectively. 

Similarly, for the synthetic data 𝒯𝒯𝑠𝑠, we can calculate the discrete probabilities 𝑠𝑠𝐴𝐴𝑖𝑖
𝑗𝑗  

The Hellinger distance for the nominal variable 𝐴𝐴𝑖𝑖  is calculated as: 

ℋ𝐴𝐴𝑖𝑖 =
1
√2

�� ��𝑟𝑟𝐴𝐴𝑖𝑖
𝑗𝑗 − �𝑠𝑠𝐴𝐴𝑖𝑖

𝑗𝑗 �
2

∀𝑗𝑗

�

1/2
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The Hellinger distance between 𝒯𝒯𝑟𝑟 and 𝒯𝒯𝑠𝑠 can be calculated by taking the mean across all nominal 
variables: 

ℋ𝒯𝒯 =
1

|𝔸𝔸|
�ℋ𝐴𝐴𝑖𝑖

|𝔸𝔸|

𝑖𝑖=1

 

2.3.2 Hellinger Distance for Cohort 
In aggregate queries, grouping is done by randomly selected nominal variables. In this sense, measuring 
the Hellinger distance for the datasets as explained above is just a special case where grouping is done 
by a single nominal variable at a time. So, for |𝔸𝔸| number of nominal variables in the original datasets, 
we may execute |𝔸𝔸| number of queries with each query grouped by a single variable. Then by averaging 
the Hellinger distances of these queries, we reach the same results in 1.3.1 

If grouping is done by more than a single variable, it is as if we are defining a new nominal variable 𝐴𝐴𝑞𝑞 
where 𝐴𝐴𝑞𝑞 may be any combination of two or more dataset variables i iA A∀ ∈  as defined in 1.3.1. 
The query will result in a specific number of classes for 𝐴𝐴𝑞𝑞. Using the superscript 𝑗𝑗 to indicate the 𝑗𝑗𝑡𝑡ℎ 
class of 𝐴𝐴𝑞𝑞, we calculate the Hellinger distance for the query by: 

ℋ𝒬𝒬 =
1
√2

�� ��𝑟𝑟𝐴𝐴𝑞𝑞
𝑗𝑗 − �𝑠𝑠𝐴𝐴𝑞𝑞

𝑗𝑗 �
2

∀𝑗𝑗

�

1/2

 

Both discrete probabilities 𝑟𝑟 and 𝑠𝑠 were defined earlier in 1.3.1. For instance, consider an aggregate 
query grouped by the two nominal variables 𝐴𝐴1 = "income" and 𝐴𝐴2 = "marital status" with each having 
two distinct classes. The query will result in the variable 𝐴𝐴𝑞𝑞 having four distinct classes with a discrete 
probability 𝑟𝑟𝐴𝐴𝑞𝑞

𝑗𝑗  for each resulting class 𝑗𝑗. 

2.3.3 Euclidean Distance for Cohort 
Once the aggregate query is executed, the variable 𝐴𝐴𝑞𝑞, as defined in 1.3.2, will result in the classes: 
1,2. . 𝑗𝑗. . 𝐽𝐽. If the data includes a continuous variable 𝐴𝐴𝑐𝑐, an aggregate function, say AGG, may be applied 
to that variable. For each class 𝑗𝑗, an aggregation value [𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴𝑐𝑐)]𝑗𝑗 of the continuous variable can be 
calculated. For instance, let 𝐴𝐴𝑞𝑞 be a combination of two nominal variables 𝐴𝐴1 = "income" and 𝐴𝐴2 =
"marital status". Let 𝐴𝐴𝑐𝑐 = "age" be a continuous variable, then for each of the four distinct classes, we 
can calculate the AVG(age). Define: 

• 𝑣𝑣𝑗𝑗𝑟𝑟 is the aggregate value (e.g., [AVG(age)]𝑗𝑗) corresponding to the 𝑗𝑗𝑡𝑡ℎ class of an arbitrary 
continuous variable 𝐴𝐴𝑐𝑐 in 𝒯𝒯𝑟𝑟. 

• 𝑣𝑣𝑗𝑗𝑠𝑠 is the aggregate value corresponding to the 𝑗𝑗𝑡𝑡ℎ class of the same continuous variable 𝐴𝐴𝑐𝑐 in 
𝒯𝒯𝑠𝑠 

From the above components, we can find the different components: 

𝑑𝑑𝑗𝑗 = 𝑣𝑣𝑗𝑗𝑟𝑟 − 𝑣𝑣𝑗𝑗𝑠𝑠 ∀𝑗𝑗 

We further find the mean and standard deviation across all the classes: 
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𝜇𝜇𝑑𝑑 =
1
𝐽𝐽
�𝑑𝑑𝑗𝑗

𝐽𝐽

𝑗𝑗=1

 

𝜎𝜎𝑑𝑑 = �
1
𝐽𝐽
�(
𝐽𝐽

𝑗𝑗=1

𝑑𝑑𝑗𝑗 − 𝜇𝜇𝑑𝑑)2 

and we compute the standardized aggregate values: 

𝑧𝑧𝑗𝑗 =
𝑑𝑑𝑗𝑗 − 𝜇𝜇𝑑𝑑

𝜎𝜎𝑑𝑑
 

Finally, we compute the norm and normalize it to reflect the normalized Euclidean distance between the 
real and synthetic queries: 

ℰ𝒬𝒬 =
∥ 𝑧𝑧𝑗𝑗 ∥
𝐽𝐽

 

Normalizing the distance by the number of resulting classes for the random query enables us to average 
the Euclidean distance across multiple queries since each of them may result in different number of 
classes. 

2.3.4 Example for calculating distances 

As a simple example, consider a real r  dataset with the variables { _ , }n work class education=  

and { _ _ }c hours per week= . A random aggregate query is executed and resulted in the following: 

work_class education AVG(hours_per_week) COUNTS 

Private Divorced 39.0 219 

Self-emp Married 33.3 9 

Private Married 41.0 29 

Local-gov Never-married 36.0 20 

Private Never-married Nan Nan 

Aggregate random query applied to r  
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work_class education AVG(hours_per_week) COUNTS 

Private Divorced 35.0 121 

Self-emp Married 40.0 30 

Private Married 38.5 21 

Local-gov Never-married Nan Nan 

Private Never-married 39.0 3 

Aggregate random query applied to s  

 

The query results in a new variable qA  which is the combination of 1 _A work class=  and 

2A education= . The resulting variable assumes new classes which are basically the combination of the 
classes of the original variables. Further, the executed random query does not necessarily result in the 
same number and type of records (i.e. classes) for both real and synthetic data. This explains the 
presence of Nan which indicates a non-matching record. This can go both sides, i.e., synthetic data may 
miss a class combination that is present in the real data, or it may result in a combination that is never 
present in the real data.  

In the tables above, the real data query resulted in 277 occurrences of the first four classes (i.e. (Private, 
Divorced) with a probability 219/277=0.791, (Self-emp, Married) with a probability of 9/277=0.0325 and 
so forth. The synthetic data query resulted in a total of 175 occurrences and its class probabilities can be 
calculated in the same manner.   

Replacing Nan by a probability of zero, the Hellinger distance between the two queries is calculated as  

2 2 1/21 (( 0.791 0.691) ( 0.325 0.171) ) 0.0523
2

Q = − + − + =  

For the Euclidean distance, we first find the different components of the resulting averages of the 
continuous variable hours_per_week as (4, -0.67,2.5). Note that the non-matching classes are ignored. 
The component vector can be standardized into (0.702,-1.145,0.443) and finally, the norm is calculated 
and divided by the number of components resulting in a normalized Euclidean distance of 0.471. 
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3. Appendix 3: Optimal Model Parameters 
Hyperparameter optimization for generating each of the synthetic datasets. Optimization was 
performed on a Nvidia p4000 GPU. 

 

 Optimal Value 

Batch Size 256 

Training Epochs 50 

Learning Rate 8.98 × 10−6 

Optimization Algorithm ADAM 

LSTM Layers 1 

LSTM Hidden Size 648 

Embedding Size for 
Baseline Characteristics 

[sex: 3, elixhauser: 9, age: 13] 

Embedding Size for Event 
Labels 

29 

Embedding Size for Event 
Attributes 

[sojourn time: 8, dispensed amount: 12, dispensed days: 12, ED 
diagnostic code: 18, ED RIW: 12 , hospitalization length of stay: 
12, hospitalization diagnostic code: 8, hospitalization RIW: 12, 
cause of death: 12, lab test name: 9, lab test result: 12] 

Table 4: Optimal model parameters as selected via hyperparameter optimization. 
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