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Appendix

Table A.1: The MedDRA (Medical Dictionary for Regulatory Activities) preferred terms
used to define liver toxicity (George et al. 2018; Suzuki et al. 2015). If any report contains
one of the terms listed in the table as the adverse event, the patient is considered to have
experienced liver toxicity.

Blood alkaline phosphatase increased Blood bilirubin increased
Transaminases increased Alanine aminotransferase increased
Aspartate aminotransferase increased Hepatitis toxic
Hepatitis Acute hepatic failure
Hepatic failure Hepatic function abnormal
Cholestatic liver injury Hyperbilirubinaemia
Jaundice Liver function test abnormal
Urine bilirubin increased Hepatitis fulminant
Hepatotoxicity Hepatocellular injury
Hepatitis acute Hepatic enzyme increased
Yellow skin Bilirubin conjugated increased
Cholestasis Liver injury
Hepatic necrosis Urobilinogen urine increased
Hepatic enzyme abnormal Ocular icterus
Hypertransaminasaemia Jaundice cholestatic
Alanine aminotransferase abnormal Hepatitis cholestatic
Coma hepatic Mixed liver injury
Subacute hepatic failure Bilirubin urine
Blood bilirubin abnormal Liver transplant
Aspartate aminotransferase abnormal Drug-induced liver injury
Blood alkaline phosphatase abnormal Hepatorenal failure
Transaminases abnormal Reye’s syndrome
Hepatorenal syndrome Hepatic infiltration eosinophilic
Cholestatic pruritus Jaundice hepatocellular
Total bile acids increased Glutamate dehydrogenase increased
Icterus index increased Bilirubin conjugated abnormal
5’nucleotidase increased

1



Simulation results for age

In Tables A.2-A.4, we present simulation results when the population is divided by age group
(above or up to 50 years old) rather than sex. The simulation settings are very similar to those
for sex. One difference is on the cutoff points for sample size categories. After processing and
filtering the data to obtain count tables with satisfactory numbers for different age groups,
we are left with 739 different AEs. With the values 8874 and 20880 being the 25% and
50% quantiles of the ni.’s, we divided the AEs into three categories depending on the size
of ni.. The ni.’s within the intervals (0, 8874], (8874, 20880], and (20880,∞) are considered
to be of “small”, “moderate”, and “large” count sizes, respectively. Simulations then follow
the procedure for those regarding sex. The performance of different inference methods also
parallels that observed in simulations regarding sex.

Table A.2: False discovery rate (FDR) for the likelihood ratio test (LRT), normal approx-
imation, proportional reporting ratio (PRR), and reporting odds ratio (ROR) while using
either Max-Stat or Benjamini-Hochberg (BH) method for adjustment of multiple testing
when all null hypotheses are true. The inference methods were applied at α = 0.05. The
result is based on 500,000 simulation runs based on the FAERS dataset regarding age for
different sample sizes when there is no difference between age groups (∆ = 0).

Method ni. size LRT Normal approx. PRR ROR
BH small 0.0371 0.0445 0.162 0.112

medium 0.0375 0.0438 0.209 0.141
large 0.0466 0.0451 0.458 0.303

Max-Stat small 0.0472 0.0440 0.160 0.110
medium 0.0480 0.0431 0.206 0.140

large 0.0492 0.0446 0.451 0.299
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Table A.3: Sensitivity and false discovery rate (FDR) for tests regarding disparities for age
(defined as above or below 65 years) in the simulation study. The four tests are the likelihood
ratio test (LRT), normal approximation, proportional reporting ratio (PRR), and reporting
odds ratio methods while using the Benjamini-Hochberg (BH) method for adjustment of
multiple testing under different parameter settings. The simulation takes counts from 250
random AEs from each ni. size category and randomly assigns 20% of drugs from each AE
to follow a proportion that differs from the null hypothesis proportion by a value of ∆.

ni. size ∆ LRT Normal approx. PRR ROR
Sensitivity small 0.0250 0.00829 0.0119 0.0202 0.0166

small 0.05 0.0169 0.0250 0.0220 0.0243
small 0.1 0.0664 0.0879 0.0536 0.0769
small 0.2 0.297 0.346 0.209 0.324

medium 0.025 0.00648 0.0102 0.0140 0.0114
medium 0.05 0.0175 0.0268 0.0160 0.0188
medium 0.1 0.0838 0.112 0.0553 0.0790
medium 0.2 0.367 0.427 0.253 0.373

large 0.025 0.00344 0.00531 0.00773 0.00595
large 0.05 0.0183 0.0252 0.0146 0.0174
large 0.1 0.0986 0.124 0.0616 0.0889
large 0.2 0.396 0.455 0.242 0.394

FDR small 0.025 0.0301 0.036 0.130 0.0905
small 0.05 0.0300 0.0361 0.130 0.0901
small 0.1 0.0302 0.0362 0.128 0.0889
small 0.2 0.0296 0.0365 0.119 0.0826

medium 0.025 0.0300 0.0351 0.169 0.114
medium 0.05 0.0301 0.0353 0.168 0.112
medium 0.1 0.0299 0.0354 0.163 0.107
medium 0.2 0.0299 0.0359 0.143 0.0913

large 0.025 0.0362 0.0367 0.373 0.242
large 0.05 0.0340 0.0361 0.358 0.225
large 0.1 0.0317 0.0350 0.300 0.172
large 0.2 0.0308 0.0359 0.206 0.104
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Table A.4: Sensitivity and false discovery rate (FDR) for tests regarding disparities for
age (defined as above or below 65 years) in the simulation study. The four tests are the
likelihood ratio test (LRT), normal approximation, proportional reporting ratio (PRR), and
reporting odds ratio methods while using the Max-Stat method for adjustment of multiple
testing under different parameter settings. The simulation takes counts from 250 random
AEs from each ni. size category and randomly assigns 20% of drugs from each AE to follow
a proportion that differs from the null hypothesis proportion by a value of ∆.

ni. size ∆ LRT Normal approx. PRR ROR
Sensitivity small 0.025 0.00935 0.0113 0.0187 0.0151

small 0.05 0.0189 0.0238 0.0202 0.0221
small 0.1 0.0710 0.0845 0.0494 0.0712
small 0.2 0.303 0.332 0.194 0.305

medium 0.025 0.00725 0.00964 0.0124 0.0101
medium 0.05 0.0184 0.0253 0.0139 0.0164
medium 0.1 0.0846 0.105 0.0480 0.0703
medium 0.2 0.353 0.389 0.222 0.329

large 0.025 0.0032 0.00476 0.00621 0.00501
large 0.05 0.0158 0.0212 0.0111 0.0138
large 0.1 0.0791 0.0966 0.0464 0.0664
large 0.2 0.300 0.341 0.173 0.278

FDR small 0.025 0.0383 0.0356 0.129 0.0893
small 0.05 0.0381 0.0352 0.129 0.0887
small 0.1 0.0367 0.0337 0.127 0.0861
small 0.2 0.0308 0.0279 0.115 0.0724

medium 0.025 0.0380 0.0344 0.167 0.113
medium 0.05 0.0378 0.0340 0.166 0.111
medium 0.1 0.0352 0.0310 0.159 0.104
medium 0.2 0.0253 0.0220 0.133 0.0756

large 0.025 0.0387 0.0355 0.368 0.239
large 0.05 0.0359 0.0320 0.353 0.222
large 0.1 0.0270 0.0225 0.291 0.162
large 0.2 0.0132 0.0104 0.184 0.0730

Table A.5: The 2× 3 table for the event counts of drug j and a host factor given a specific
AE i, where (1) denotes Group 1, (2) denotes Group 2, and (3) denotes Group 3 based on
a host factor.

Group 1 Group 2 Group 3 Total
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An example for host factors with more than two levels

It is straightforward to extend the likelihood ratio test to situations where the host factor has
more than two levels. The key is to use the multinomial distribution instead of the binomial
distribution. Here, we illustrate it with an example for which the host factor has three levels.
Table A.5 is similar to Table 2 except that there are now three groups for the host factor.
Again, we denote n

(s)
ij to be the number of reports for the ith AE and the jth drug regarding

patients of the host factor group s (s = 1, 2, 3 for Groups 1, 2, and 3 respectively). Assume

that n
(s)
ij follows a Poisson(µ

(s)
ij ) distribution with µ

(s)
ij = λ

(s)
ij E

(s)
ij and E

(s)
ij = n

(s)
i. nij/ni.. The

global hypothesis is thus H0 : λ
(1)
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(2)
ij = λ

(3)
ij = 1 for all j, versus Ha : λ

(s)
ij 6= 1 for at

least one j and s. We can show that under the null hypothesis and conditioning on row and
column totals,
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)
.

Note n
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ij = nij. Correspondingly, we can derive the log likelihood ratio statistic

as
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)
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The p-value for the LR statistic can be computed using Monte Carlo simulations as described
previously.
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