Mathematical Derivations

Mathematical derivations for some results given in the Methods section.

1 Normal approximation test as the test for difference in proportions

Another way to derive the normal approximation test is to consider the difference in proportions. Under the null
hypothesis, the proportion of the two subgroups among those taking the drug or not taking the drug should be equal,

that is,
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This formulation resembles the commonly used difference in proportions test, and therefore motivates performing
inference based on the difference between nz(-jl.)/nij and [ngl) - ngj)]/[m — Ny

Construct a test statistic for the difference in proportions as the following;:
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As the proposed probability model conditions on the values of n;;, n;.”, and n,., the only random component in the
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this lets us to approximate a centered and scaled version of (1) with a normal distribution for large n;;, as we can
relate the expressions of (1) and (2) by a scalar factor:
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last expression would be the ratio ngjl) /nij, and the values

the normal approximation
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When performing inference, this leads to the z-score value of
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The final expression is exactly the z-score obtained with the normal approximation method.




2 Asymptotic properties for the proportional reporting ratio (PRR)

The log of the PRR can be re-written as

log PRR;; = log
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As the proposed probability model conditions on the values of n;;, ng,l)7 and n;., the only random component in the
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last expression would be the ratio ngjl) /mij, and all other terms in the expression can be treated as constants. This
motivates the definition of the function f, where
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Hence, we have log PRR;; = f (ngjl) /nij). By taking derivative, it follows that
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Letting p; = ngl) /m;., one can also work backwards as in (3) to show that
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Working from the normal approximation

where p; =

we can use the delta method to obtain
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for large values of n;.

3 Asymptotic properties of the reporting odds ratio (ROR)
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). For real data examples, this is usually true; n;’ contains all counts from

(s)

We assume that n;’ > n:;” and n

i Places a further upper limit to drug j. Only in the case where AE i
and group s has reports from a single drug can we see cases where nz(s) = nz(-s.) for s = 1 or 2. But such scenarios were
not encountered in our analysis, possibly due to our data cleaning. This does have implication for simulation studies,



for which one need careful selection of the simulation parameters n;;, nl(-,s), and n;. for all 4, j, s to avoid violating this
assumption.

When n(_l) > n'Y and n(?) > n are satisfied, the log of the reporting odds ratio can be written as the fol-
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With this definition, it follows that
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Letting p; := ngl)/nZ7 again, we can also work backwards as in (4) to show that
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Using the delta method as in Section 2, it follows that for large n;;, we have
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