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UH and UHp for Surveillance Case Number Release
The UH approach forms a hierarchical tree among the data attributes and injects noise to
each node count in each layer of the tree, explores equality constraints between each parent
node and its children nodes in the tree to improve the accuracy of the sanitized count of
the parent nodes (low-order marginals) and release the final corrected counts from the whole
tree. Figure S1 displays a 4-layer hierarchical tree formed in the UH approach on a data set
with 3 variables (age group, minority/majority, sex). We refer to the node at the top of the
tree as the root (layer 1) and those at the bottom as the leaf nodes (layer 4). The age nodes
at layer 3 are parents to the race/ethnicity nodes in layer 3, which are the parent nodes to
the sex nodes in layer 4. There is no particular ordering among the three attributes in the
example in Figure S1. We can place the attributes in the middle layers of the trees that would
enjoy a lower mean squared error (MSE) (MSE for a sanitized count x̃ is EM(x̃− x)2, where
x is the original count and the expectation is taken over the distribution of the randomized
algorithm). in their marginal sanitized counts relative to their original counts, compared to
the MSE resulting from a simple sum of the directly sanitized counts of the most granular
cells as done in the flat sanitizer.

Figure S1: A count hierarchical tree with three binary attributes

The UH procedure is implemented in 3 steps. First, since each layer is sanitized, the total
budget ϵ should be split among the layers following the sequential composition principle in
DP [2]. For illustration purposes, we assume each layer receives 1/l of the total ϵ, where l is
the height of the tree (other privacy allocation schemes across the layers can also be used).
and l = 4 in Example 1. The count h[v] in each node v in the tree is sanitized via the
Laplace mechanism Lap(0, lϵ−1); that is, h̃[v] = h[v] + e,where e ∼ Lap(lϵ−1), where h̃[v] is
the sanitized count. In step 2, intermediate node count z[v] for each node v is obtained via
Eq (S1),

z[v]=

{
h̃[v], if v is the leaf node
kl−kl−1

kl−1
h̃[v] + kl−1−1

kl−1

∑
u∈succ(v) z[u], o.w.

, (S1)
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where succ(v) denotes the set of children nodes to parent node v and k is the number of
children per parent node, which is assumed to be the same for each parent (k = 2 in example
1). The reason behind Eq (S1) is that for the nodes not from the bottom layer (the non-
leaf nodes), a sanitized count comes from two sources (the node being sanitized, and the
summation from its children nodes) so Eq (S1) calculates a weighted average of the two.
Obviously, z[v] may no longer be equal to the sum of the node counts of its children nodes,
violating the equality constraints in contingency tables. This inconsistency is corrected via
Eq (S2), yielding the final sanitized count h∗[v]

h∗[v]=

{
z[v] if v is the root node

z[v] + k−1
(
h∗[u]−

∑
w∈succ(u) z[w]

)
, o.w.

, (S2)

where u is the parent mode to node v, succ(u) contains the children nodes to parent node u,
and h[u] −

∑
w∈succ(u) z[w] is the correction term to ensure the equality constraint holds for

each parent node in the tree.

We extend the UH approach to sanitizing a proportion tree (Figure S1) in place of a count
tree and name it the UHp approach (“p” in the name “UHp” stands for “porportion”), in cases
where the total sample size n is public information and can be released directly, or when it is
desirable not to alter n from a statistical inferential perspective as n is critical for inferences
such as inferential efficiency.

Figure S2: A proportion hierarchical tree with three binary attributes

The sanitization process for UHp is similar to UH with a few modifications. First, given the
proportion at the top layer is always 1, there is no need to sanitize the node and the total
ϵ is only needed to split into l − 1 layers. Second, the Laplace distribution from which the
noise is drawn becomes Laplace(0, (l−1)ϵ−1/n) as the global sensitivity for proportion is 1/n.
Third, after obtaining h̃[v] = h[v] + e, where e ∼ Lap (l− 1)ϵ−1/n) for all the non-root node
proportions, we normalize the proportions in layer 2 as in h̃[v(2)] = h̃[v(2)]/

∑
u h̃[u], where u

refers to all the nodes in layer 2, so that the layer-2 proportions sum up to 1, honoring the
constraint of h̃[v] = h[v] = 1 for the root node. The steps in Eqs (S1) and (S2) after the
normalization step remain the same as in the UH approach. After the sanitized proportions
are obtained, the corresponding counts can be obtained by multiplying the proportions with
the total n.

Similar to the flat sanitizer, the sanitized counts or proportions in the UH and the UHp
approaches can be negative as the support of the Laplace distribution is R. In addition, the
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sanitized proportions may be > 1. We applied the same methods as used for the flat sanitizer
to deal with negative counts and in the case of a fixed upper bound such as the proportions
adding up to 1 and when the total count is fixed.

Simulation study and CDC death count application for UH and UHp
In the simulation study, for both UH and UHp, the tree height is l = 4 as there are 3 attributes
– X1 is layer 2, X2 in layer 3, and X3 in layer 4 – and k = 2 as all attributes are binary. The
simulation results are presented in Figure S3, together with the flat Laplace sanitizer and the
original results for comparison.
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Figure S3: Privacy-preserving inference of the log-linear model based on sanitized counts by
different methods in the simulation study (m = 3; 500 repeats)

For the application to the CDC COVID-19 death count data, l = 3 and k = 7 in the
hierarchical tree for both UH and UHp. We placed age in layer 2 and race/ethnicity in layer
3 and don’t expect the ordering would affect the results of the analysis we conducted in a
statistically meaningful way. The results are presented in Figure S4, together with the flat
Laplace sanitizer and the original results for comparison.
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Figure S4: Privacy-Preserving results from the Log-linear model fitted on the CDC
COVID-19 death data
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Examples of sanitized US COVID-19 death counts by the Flat Laplace
sanitizer (m = 3 and ϵ = 0.5)

Table S1: Three sets of sanitized U.S. COVID-19 death counts by age group and
race/ethnicity on May 24, 2022 (m = 3; ϵ = 0.5) by the flat Laplace sanitizer

Age (ys) Race/Ethnicity
group NH White NH Black NH AIAN NH Asian NH NHPI NH Mix Hispanic Total
<17 385 273 19 38 14 25 302 1056
18-29 2265 1480 183 181 33 78 2018 6238
30-39 6665 4140 570 561 151 160 5916 18162
40-49 17277 8939 1024 1200 267 313 13979 43000
50-64 97407 35752 3196 5310 703 955 43655 186979
65-74 141417 37760 2913 7431 498 914 38416 229350
>75 380635 54588 3210 16515 447 1383 56700 513478
Total 646051 142933 11115 31236 2114 3827 160986 998262
Age (ys) Race/Ethnicity
group NH White NH Black NH AIAN NH Asian NH NHPI NH Mix Hispanic Total
<17 387 289 19 34 11 35 304 1079
18-29 2273 1492 183 197 54 86 2014 6299
30-39 6660 4124 568 571 147 157 5917 18145
40-49 17269 8930 1029 1216 279 314 13972 43010
50-64 97386 35756 3200 5315 723 953 43647 186982
65-74 141407 37753 2890 7426 513 918 38420 229327
>75 380591 54568 3205 16518 450 1382 56706 513420
Total 645974 142912 11095 31278 2177 3846 160980 998262
Age (ys) Race/Ethnicity
group NH White NH Black NH AIAN NH Asian NH NHPI NH Mix Hispanic Total
<17 392 284 19 29 10 29 309 1072
18-29 2236 1507 189 196 48 62 2007 6243
30-39 6659 4146 563 562 150 153 5903 18135
40-49 17260 8933 1002 1208 287 316 13983 42987
50-64 97418 35743 3198 5312 719 964 43674 187027
65-74 141398 37767 2897 7437 516 903 38420 229339
>75 380604 54573 3192 16513 460 1391 56724 513458
Total 645966 142953 11060 31255 2190 3818 161020 998262
Race/ethnicity = ’unknown’ is not included in the table.
NH = Non-Hispanic; AIAN = American Indian or Alaska Native; NHPI = Native Hawaiian or Other Pacific Islander;
"Mix" means "more than one race"
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The RR mechanism and the RR-debiased procedure
The RR mechanism for sanitizing edges in a network works as follows. Let pij denote the
probability the original edge eij = 1 is retained and qij be the probability that eij = 0 is
retained after sanitization for nodes i ̸= j = 1, . . . , n. To satisfy ϵij-DP (ϵij edge DP precisely
speaking; see Liu et al. [1] for details) in the sanitization of the relational information eij = 1
, one may set pij = qij = eϵij/(1+eϵij). When there is no particular reasons for using different
ϵij for different pairs of nodes, one may set ϵij ≡ ϵ and the probability of edge flipping in the
network is

pij = qij ≡ 1/(1 + eϵ). (S3)

If all edges are mutually independent, the total cost for sanitizing the whole network is also
ϵ per the parallel composition principle.

Liu et al. [1] employs a debiasing approach as an attempt to remove bias in sanitized networks
via the RR mechanism (with edges e∗ij) by synthesizing new networks with edges ẽ∗ij given an
RR-sanitized network. Specifically,

ẽ∗ij|e∗ij = 1 ∼ Bern(p1), where p1 =
(p+ q − 1)q

(2q − 1)p
, (S4)

ẽ∗ij|e∗ij ∼ Bern(p0), where p0 =
q(p+ q − 1)

(1− p)(2q − 1)
, (S5)

where q = eϵ/(1 + eϵ) is the probability of retaining an original edge by RR and p is the
proportion of all e∗ij = 1 in row i of the adjacency matrix of the synthetic network generated
by RR (without the diagonal element), and. Synthetic networks via RR-debiased can be
summarized and analyzed in the same way as the original network including descriptive
statistics, visualization, and inference. For inference, there is no need to explicitly model the
RR mechanism or the subsequent debiasing/sanitization process if m > 1 sets of synthetic
networks are released. The debiasing procedure does not use the information from the original
network and thus maintains the privacy guarantees, but at the cost of introducing another
layer of variability. The debiased sanitized network is made of edges Y ∗ drawn from two
Bernoulli distributions, depending on whether the synthetic edge Y ′ from the DWRR is 1 or
0.

Simulation Study on RR and RR-debiased
For RR, the probability of flipping an edge per Eq (S3) is (1 + e5)−1 = 0.7%, (1 + e2)−1 =
11.9%, (1+ e)−1 = 26.9% and (1+ e0.5)−1 = 37.5% at ϵ= 5, 2, 1, 0.5, respectively. Though the
probability of retaining the original relation between nodes i and j is very low at ϵ = 5, the
number of edges is expected to double (39e5/(1 + e5) + (4950− 39)e5/(1 + e5) = 71.6 where
39 is the edge count in the original network).

The sanitized CTNs via RR and RR-debiased are presented in Figure S5 with the original
CTN presented for comparison. Table S2 presents the number of edges and the number of
triangles of the sanitized CTNs via RR and RR-debias. Figure S6 shows the DD, which is the
distribution of close contacts of an individual in a CTN via RR and RR-debias, and Figures
S7 depicts the ESPD of the sanitized CTNs with the TVD in DD between the sanitized and
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original CTNs. Figure S8 shows the box plots of the betweenness centrality and closeness
centrality of the 100 nodes in the sanitized CTNs via RR and RR-debias vs the original.

(a) original

(c) RR

(d) RR-debiased
Figure S5: Examples of differentially privately sanitized CTNs via RR and RR-debiased

Table S2: Average (SD) number of edges and number of triangles over 100 repeats
RR RR-debiased

ϵ number of edges number of triangle number of edges number of triangle
0.5 1876 (37.4) 8802 (528.3) 844 (82.4) 1258 (356.4)
2 619 (20.9) 320 (38.1) 182 (21.9) 14 (6.1)
5 72 (5.2) 10 (0.9) 48 (6.2) 6 (2.5)
8 40 (1.3) 10 (0.3) 40 (1.4) 9 (0.7)
10 39 (0.5) 10 (0.1) 39 (0.4) 10 (0)

original: number of edges = 39; number of triangle = 10. .

The results on the privacy-preserving inference of the ERGM based on the sanitized CTNs
via RR and RR-debias are presented in Table S3. We present the results for ϵ = 5, 15, 18, 24;
the results at ϵ < 5 are even worse.
Table S3: Privacy-preserving Inference of β in the ERGM model based sanitized CTNs via

RR and RR-debiased (m = 3; 500 repeats)

method metric ϵ = 5 ϵ = 15 ϵ = 18 ϵ = 24
bias 3.260 0.627 0.269 0.023

RR RMSE 3.260 0.635 0.299 0.165
CP 0 0.002 0.366 0.832
bias 1.500 0.305 0.147 0.008

RR-debiased RMSE 1.501 0.330 0.204 0.165
CP 0 0.366 0.704 0.830

Original data: bias = -0.021, RMSE = 0.171, and CP = 0.942.
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(a) RR

(b) RR-debiased

Figure S6: Degree distribution in the original and sanitized CTNs via RR and RR-debias

(a) RR (b) RR-debiased

Figure S7: Edgewise shared partner distribution in sanitized CTNs via RR and RR-debias

betweenness centrality closeness centrality

RR RR-debiased RR RR-debiased

Figure S8: Box plots of betweeness centrality and closeness centrality of 100 nodes in
original and sanitized CTNs via RR and RR-debias
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