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Abstract. The counterfactual decomposition technique popularized by Blinder
(1973, Journal of Human Resources, 436–455) and Oaxaca (1973, International
Economic Review, 693–709) is widely used to study mean outcome differences be-
tween groups. For example, the technique is often used to analyze wage gaps by
sex or race. This article summarizes the technique and addresses several compli-
cations, such as the identification of effects of categorical predictors in the detailed
decomposition or the estimation of standard errors. A new command called oaxaca

is introduced, and examples illustrating its usage are given.
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1 Introduction

An often used methodology to study labor-market outcomes by groups (sex, race, and
so on) is to decompose mean differences in log wages based on linear regression models
in a counterfactual manner. The procedure is known in the literature as the Blinder–
Oaxaca decomposition (Blinder 1973; Oaxaca 1973). It divides the wage differential
between two groups into a part that is “explained” by group differences in produc-
tivity characteristics, such as education or work experience, and a residual part that
cannot be accounted for by such differences in wage determinants. This “unexplained”
part is often used as a measure for discrimination, but it also subsumes the effects of
group differences in unobserved predictors. Most applications of the technique can be
found in the labor market and discrimination literature (for meta studies, see, e.g.,
Stanley and Jarrell [1998] or Weichselbaumer and Winter-Ebmer [2005]). However, the
method can also be useful in other fields. In general, the technique can be employed
to study group differences in any (continuous and unbounded1) outcome variable. For
example, O’Donnell et al. (2008) use it to analyze health inequalities by poverty status.

The purpose of this article is to introduce a new Stata command, called oaxaca, that
implements the Blinder–Oaxaca decomposition. In the next section, the most common
variants of the decomposition are summarized, and a number of issues, such as the
identification of the contribution of categorical predictors or the estimation of standard
errors, are addressed. The third section then describes the syntax and options of the

1. See Sinning, Hahn, and Bauer (in this issue) for the decomposition of group differences in categor-
ical or bounded outcomes.
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new oaxaca command, and the fourth section uses labor-market data to illustrate its
applications.

2 Methods and formulas

Given are two groups, A and B; an outcome variable, Y ; and a set of predictors.
For example, think of a group of males and a group of females, (log) wages as the
outcome variable, and human capital indicators such as education and work experience
as predictors. The question now is how much of the mean outcome difference,

R = E(YA) − E(YB)

where E(Y ) denotes the expected value of the outcome variable, is accounted for by
group differences in the predictors.

Based on the linear model

Y� = X ′
�β� + ε�, E(ε�) = 0 � ∈ (A,B)

where X is a vector containing the predictors and a constant, β contains the slope
parameters and the intercept, and ε is the error, the mean outcome difference can be
expressed as the difference in the linear prediction at the group-specific means of the
regressors. That is,

R = E(YA) − E(YB) = E(XA)′βA − E(XB)′βB (1)

because
E(Y�) = E(X ′

�β� + ε�) = E(X ′
�β�) + E(ε�) = E(X�)′β�

where E(β�) = β� and E(ε�) = 0 by assumption.

To identify the contribution of group differences in predictors to the overall out-
come difference, (1) can be rearranged, for example, as follows (see Winsborough and
Dickinson [1971]; Jones and Kelley [1984]; and Daymont and Andrisani [1984]):

R = {E(XA) − E(XB)}′ βB + E(XB)′(βA − βB) + {E(XA) − E(XB)}′ (βA − βB) (2)

This is a “threefold” decomposition; that is, the outcome difference is divided into
three components:

R = E + C + I

The first component,
E = {E(XA) − E(XB)}′ βB

amounts to the part of the differential that is due to group differences in the predictors
(the “endowments effect”). The second component,

C = E(XB)′(βA − βB)
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measures the contribution of differences in the coefficients (including differences in the
intercept). And the third component,

I = {E(XA) − E(XB)}′ (βA − βB)

is an interaction term accounting for the fact that differences in endowments and coef-
ficients exist simultaneously between the two groups.

The decomposition shown in (2) is formulated from the viewpoint of group B. That
is, the group differences in the predictors are weighted by the coefficients of group B to
determine the endowments effect (E). The E component measures the expected change
in group B’s mean outcome if group B had group A’s predictor levels. Similarly, for
the C component (the “coefficients effect”), the differences in coefficients are weighted
by group B’s predictor levels. That is, the C component measures the expected change
in group B’s mean outcome if group B had group A’s coefficients. Naturally, the
differential can also be expressed from the viewpoint of group A, yielding the reverse
threefold decomposition,

R = {E(XA) − E(XB)}′ βA + E(XA)′(βA − βB) − {E(XA) − E(XB)}′ (βA − βB) (3)

Now the endowments effect amounts to the expected change of group A’s mean outcome
if group A had group B’s predictor levels. The coefficients effect quantifies the expected
change in group A’s mean outcome if group A had group B’s coefficients.

An alternative decomposition prominent in the discrimination literature results from
the concept that there is a nondiscriminatory coefficient vector that should be used
to determine the contribution of the differences in the predictors. Let β∗ be such a
nondiscriminatory coefficient vector. The outcome difference can then be written as

R = {E(XA) − E(XB)}′ β∗ + {E(XA)′(βA − β∗) + E(XB)′(β∗ − βB)} (4)

We now have a “twofold” decomposition,

R = Q + U

where the first component,

Q = {E(XA) − E(XB)}′ β∗

is the part of the outcome differential that is explained by group differences in the
predictors (the “quantity effect”), and the second component,

U = E(XA)′(βA − β∗) + E(XB)′(β∗ − βB)

is the unexplained part. The latter is usually attributed to discrimination, but it is
important to recognize that it also captures all the potential effects of differences in
unobserved variables.
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The unexplained part in (4) is sometimes further decomposed. Let βA = β∗ + δA

and βB = β∗ + δB , with δA and δB as group-specific discrimination parameter vectors
(positive or negative discrimination, depending on the sign). U can then be expressed
as

U = E(XA)′δA − E(XB)′δB

That is, the unexplained component of the differential can be subdivided into a part,

UA = E(XA)′δA

that measures discrimination in favor of group A and a part,

UB = −E(XB)′δB

that quantifies discrimination against group B.2 Again, however, this interpretation
hinges on the assumption that there are no relevant unobserved predictors.

The estimation of the components of the threefold decompositions shown in (2) and
(3) is straightforward. Let β̂A and β̂B be the least-squares estimates for βA and βB ,
obtained separately from the two group-specific samples. Furthermore, use the group
means XA and XB , as estimates for E(XA) and E(XB). Based on these estimates, (2)
and (3) are computed as

R̂ = Y A − Y B = (XA − XB)′β̂B + X
′
B(β̂A − β̂B) + (XA − XB)′(β̂A − β̂B)

and

R̂ = Y A − Y B = (XA − XB)′β̂A + X
′
A(β̂A − β̂B) − (XA − XB)′(β̂A − β̂B)

The determination of the components of the twofold decomposition shown in (4)
is more involved because an estimate for the unknown nondiscriminatory coefficients
vector β∗ is needed. Several suggestions have been made in the literature. For example,
there may be reason to assume that discrimination is directed toward only one of the
groups, so that β∗ = βA or β∗ = βB (see Oaxaca [1973], who speaks of an “index number
problem”). Again assume that members of group A are males and members of group
B are females. If, for instance, wage discrimination is directed only against women and
there is no (positive) discrimination of men, then we can use β̂A as an estimate for β∗

and compute (4) as
R̂ = (XA − XB)′β̂A + X

′
B(β̂A − β̂B) (5)

Similarly, if there is only (positive) discrimination of men but no discrimination of
women, the decomposition is

R̂ = (XA − XB)′β̂B + X
′
A(β̂A − β̂B) (6)

Often, however, there is no specific reason to assume that the coefficients of one or
the other group are nondiscriminating. Moreover, economists have argued that the

2. UA and UB have opposite interpretations. A positive value for UA reflects positive discrimination
of group A; a positive value for UB indicates negative discrimination of group B.
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undervaluation of one group comes along with an overvaluation of the other (e.g., Cotton
[1988]). Reimers (1983) therefore proposes using the average coefficients over both
groups as an estimate for the nondiscriminatory parameter vector; that is,

β̂∗ = 0.5β̂A + 0.5β̂B

Similarly, Cotton (1988) suggests to weight the coefficients by the group sizes, nA and
nB ; that is,

β̂∗ =
nA

nA + nB
β̂A +

nB

nA + nB
β̂B

Furthermore, based on theoretical derivations, Neumark (1988) advocates the use of the
coefficients from a pooled regression over both groups as an estimate for β∗.

As pointed out by Oaxaca and Ransom (1994) and others, (4) can also be expressed
as

R = {E(XA) − E(XB)}′ {WβA + (I − W)βB}
+ {(I − W)′E(XA) + W′E(XB)}′ (βA − βB)

where W is a matrix of relative weights given to the coefficients of group A, and I is the
identity matrix. For example, choosing W = I is equivalent to setting β∗ = βA. Simi-
larly, W = 0.5I is equivalent to β∗ = 0.5βA +0.5βB . Furthermore, Oaxaca and Ransom
(1994) show that

Ŵ = Ω = (X′
AXA + X′

BXB)−1X′
AXA (7)

with X as the observed data matrix is equivalent to using the coefficients from a pooled
model over both groups as the reference coefficients.3

An issue with the approach by Neumark (1988) and Oaxaca and Ransom (1994) is
that it can inappropriately transfer some of the unexplained parts of the differential into
the explained component, although this does not seem to have received much attention
in the literature.4 Assume a simple model of log wages (ln W ) on education (Z) with
the sex-specific intercepts αM and αF due to discrimination. The model is

ln W =
{

αM + γZ + ε, if “male”
αF + γZ + ε, if “female”

3. Another solution is to set W = diag(β − βB) × diag(βA − βB)−1, where β without a subscript
denotes the coefficients from the pooled model. Although the decomposition results are the same,
this approach yields a weighting matrix that is quite different from Oaxaca and Ransom’s (1994)
Ω. For example, whereas W computed as described in this footnote is a diagonal matrix, Ω has
off-diagonal elements that are unequal to zero and are not even symmetric.

4. An exception is Fortin (2006).
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Let αM = α and αF = α + δ, where δ is the discrimination parameter. Then the model
can also be expressed as

ln W = α + γZ + δF + ε

with F as an indicator for “female”. Assume that γ > 0 (positive relation between
education and wages) and δ < 0 (discrimination against women). If we use γ∗ from a
pooled model,

ln W = α∗ + γ∗Z + ε∗

in (4), then following from the theory on omitted variables (see, e.g., Gujarati [2003,
510–513]), the explained part of the differential is

Q = {E(ZM ) − E(ZF )} γ∗ = {E(ZM ) − E(ZF )}
{

γ + δ
Cov(Z,G)

Var(Z)

}
where Var(Z) is the variance of Z, and Cov(Z,G) is the covariance between Z and G.
If men on average are better educated than women, then the covariance between Z and
G is negative, and the explained part of the decomposition gets overstated (given γ > 0
and δ < 0). In essence, the difference in wages between men and women is explained
by sex.

To avoid such a distortion of the decomposition results because of the residual group
difference spilling over into the slope parameters of the pooled model, my recommen-
dation is to always include a group indicator in the pooled model as an additional
covariate.

Estimation of sampling variances

Given the popularity of the Blinder–Oaxaca procedure, it is astonishing how little at-
tention has been paid to the issue of statistical inference. Most studies in which the
procedure is applied only report point estimates for the decomposition results and do
not make any indications about sampling variances or standard errors.5 However, for
an adequate interpretation of the results, approximate measures of statistical precision
are indispensable.

Approximate variance estimators for certain variants of the decomposition were first
proposed by Oaxaca and Ransom (1998), with Greene (2008, 55–56) making similar
suggestions. The estimators by Oaxaca and Ransom (1998) and Greene (2008) are a
good starting point, but they neglect an important source of variation. Most social-
science studies on discrimination are based on survey data where all (or most of) the
variables are random variables. That is, not only the outcome variable but also the pre-
dictors are subject to sampling variation (an exception would be experimental factors
set by the researcher). Whereas an important result for regression analysis is that it does
not matter for the variance estimates whether regressors are stochastic or fixed, this is

5. Exceptions are, for example, Oaxaca and Ransom (1994, 1998), Silber and Weber (1999),
Horrace and Oaxaca (2001), Fortin (2006), Heinrichs and Kennedy (2007), and Lin (2007). Fur-
thermore, Jackson and Lindley (1989) and Shrestha and Sakellariou (1996) propose statistical tests
for discrimination.
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not true for the Blinder–Oaxaca decomposition. The decomposition is based on mul-
tiplying regression coefficients by means of regressors. If the regressors are stochastic,
then the means have sampling variances. These variances are of the same asymptotic
order as the variances of the coefficients (think of the means as the intercepts from
regression models without covariates). To get consistent standard errors for the decom-
position results, it seems important to take into account the variability induced by the
randomness of the predictors.

Consider the expression
Y = X

′
β̂ (8)

where X is the vector of mean estimates for the predictors, and β̂ contains the least-
squares estimates of the regression coefficients. If the predictors are stochastic, then X
and β̂ are both subject to sampling variation. Assuming that X and β̂ are uncorrelated
(which follows from the standard regression assumption that the conditional expectation
of the error is zero for all covariate values; of course, this is only true if the model is
correctly specified), the variance of (8) can be written as

V (X
′
β̂) = E(X)′V (β̂)E(X) + E(β̂)′V (X)E(β̂) + trace

{
V (X)V (β̂)

}
where V (X) and V (β̂) are the variance–covariance matrices for X and β̂ (see the proof in
Jann [2005b]; for the variance of the product of two independent random variables, also
see Mood, Graybill, and Boes [1974, 180]). By inserting estimates for the expectations
and variance matrices, we get the variance estimator

V̂ (X
′
β̂) = X

′
V̂ (β̂)X + β̂′V̂ (X)β̂ + trace

{
V̂ (X)V̂ (β̂)

}
(9)

V̂ (β̂) is simply the variance–covariance matrix obtained from the regression procedure.
A natural estimator for V (X) is V̂ (X) = X ′X/{n(n−1)}, where X is the centered-data
matrix, i.e., X = X − 1X

′
.

The variances for the components of the Blinder–Oaxaca decomposition can be
derived analogously. For example, ignoring the asymptotically vanishing6 last term
in (9) and assuming that the two groups are independent, the approximate variance
estimators for the two terms of the decomposition shown in (5) are

V̂ {(XA−XB)′β̂A} ≈ (XA−XB)′V̂ (β̂A)(XA−XB)+ β̂′
A

{
V̂ (XA) + V̂ (XB)

}
β̂A (10)

and

V̂ {X ′
B(β̂A − β̂B)} ≈ X

′
B

{
V̂ (β̂A) + V̂ (β̂B)

}
XB + (β̂A − β̂B)′V̂ (XB)(β̂A − β̂B) (11)

where we make use of the fact that the variance of the sum of two uncorrelated random
variables is equal to the sum of the individual variances. An interesting point about

6. Whereas the first and second terms are of the order O(n−1), the last term is O(n−2).



460 The Blinder–Oaxaca decomposition for linear regression models

(10) and (11) is that ignoring the stochastic nature of the predictors will primarily affect
the variance of the first term of the decomposition (the explained part). This is because
in most applications group differences in coefficients and means are much smaller than
the levels of coefficients and means.

It is possible to develop similar formulas for all the decomposition variants outlined
above, but derivations can get complicated once a pooled model is used and covariances
between the pooled model and the group models have to be taken into account. Likewise,
derivations can get complicated if the assumption of independence between the two
groups is loosened (e.g., if dealing with a cluster sample). An alternative approach that
is simple and general and produces equivalent results is to estimate the joint variance–
covariance matrix of all used statistics (see Weesie [1999] and [R] suest) and then apply
the “delta method” (see [R] nlcom and the references therein). In fact, for independence
between the two groups, the results of the delta method for (2) are formally equal to
(10) and (11). Furthermore, a general result for the delta method is that if the input
variance matrix is asymptotically normal, then the variance matrix of the transformed
statistics is asymptotically normal (see, e.g., Greene [2008, 68–71]). That is, because
asymptotic normality holds for regression coefficients and mean estimates under very
general conditions, the variances obtained by the delta method can be used to construct
approximate confidence intervals for the decomposition results in the usual manner.

Detailed decomposition

Often, not only is the total decomposition of the outcome differential into an explained
and an unexplained part of interest, but also the detailed contributions of the single
predictors or sets of predictors are subject to investigation. For example, one might want
to evaluate how much of the gender wage gap is due to differences in education and how
much is due to differences in work experience. Similarly, it might be informative to
determine how much of the unexplained gap is related to differing returns to education
and how much is related to differing returns to work experience.

Identifying the contributions of the individual predictors to the explained part of
the differential is easy because the total component is a simple sum over the individual
contributions. For example, in (5),

Q̂ = (XA − XB)′β̂A = (X1A − X1B)β̂1A + (X2A − X2B)β̂2A + · · ·

where X1,X2, . . . are the means of the single regressors, and β̂1, β̂2, . . . are the associ-
ated coefficients. The first summand reflects the contribution of the group differences in
X1; the second, of differences in X2; and so on. Also the estimation of standard errors
for the individual contributions is straightforward.

Similarly, using (5) as an example, the individual contributions to the unexplained
part are the summands in

Û = X
′
B(β̂A − β̂B) = X

′
1B(β̂1A − β̂1B) + X

′
2B(β̂2A − β̂2B) + · · ·
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However, other than for the explained part of the decomposition, the contributions
to the unexplained part can depend on arbitrary scaling decisions if the predictors do not
have natural zero points (e.g., Jones and Kelley [1984, 334]). Without loss of generality,
assume a simple model with just one explanatory variable:

Y� = β0� + β1�Z� + ε�, � ∈ (A,B)

The unexplained part of the decomposition based on (5) then is

Û = (β̂0A − β̂0B) + (β̂1A − β̂1B)ZB

The first summand is the part of the unexplained gap that is due to “group member-
ship” (Jones and Kelley 1984); the second summand reflects the contribution of differing
returns to Z. Now assume that the zero point of Z is shifted by adding a constant, a.
The effect of such a shift on the decomposition results is as follows:

Û =
{

(β̂0A − aβ̂1A) − (β̂0B − aβ̂1B)
}

+ (β̂1A − β̂1B)(ZB + a)

Evidently, the scale shift changes the results; a portion amounting to a(β̂1A− β̂1B) is
transferred from the group membership component to the part that is due to different
slope coefficients. The conclusion is that the detailed decomposition results for the
unexplained part have a meaningful interpretation only for variables for which scale
shifts are not allowed, that is, for variables that have a natural zero point.7

A related issue that has received much attention in the literature is that the de-
composition results for categorical predictors depend on the choice of the omitted
base category (Jones 1983; Jones and Kelley 1984; Oaxaca and Ransom 1999; Nielsen
2000; Horrace and Oaxaca 2001; Gardeazabal and Ugidos 2004; Polavieja 2005; Yun
2005b). The effect of a categorical variable is usually modeled by including 0/1 vari-
ables (“dummy” variables) for the different categories in the regression equation, where
one of the categories (the “base” category) is omitted to avoid collinearity. It is easy to
see that the decomposition results for the single 0/1 variables depend on the choice of
the base category, because the associated coefficients quantify differences with respect
to the base category. If the base category changes, the decomposition results change.

For the explained part of the decomposition, this may not be critical because the
sum of the contributions of the single indicator variables (that is, the total contribu-
tion of the categorical variable) is unaffected by the choice of the base category. For
the unexplained part of the decomposition, however, there is again a tradeoff between
the group membership component (the difference in intercepts) and the part attributed

7. The problem does not occur for the explained part of the decomposition or the interaction compo-
nent in the threefold decomposition because a cancels out in these cases. Furthermore, stretching
or compressing the scales of the X variables (multiplication by a constant) does not alter any of
the decomposition results because such multiplicative transformations are counterbalanced by the
coefficient estimates.
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to differences in slope coefficients. For the unexplained part, changing the base cat-
egory not only alters the results for the single dummy variables but also changes the
contribution of the categorical variable as a whole.

An intuitively appealing solution to the problem has been proposed by Gardeazabal
and Ugidos (2004) and Yun (2005b). The idea is to restrict the coefficients for the single
categories to sum to zero, that is, to express effects as deviations from the grand mean.
This can be implemented by restricted least-squares estimation or by transforming the
dummy variables before model estimation, as proposed by Gardeazabal and Ugidos
(2004).8 A more convenient method in the context of the Blinder–Oaxaca decom-
position is to estimate the group models by using the standard dummy coding and then
transform the coefficient vectors so that deviations from the grand mean are expressed
and the (redundant) coefficient for the base category is added (Suits 1984; Yun 2005b).
If applied to such transformed estimates, the results of the Blinder–Oaxaca decomposi-
tion are independent of the choice of the omitted category. Furthermore, the results are
equal to the simple averages of the results one would get from a series of decompositions
in which the categories are used one after another as the base category (Yun 2005b).

The deviation contrast transform works as follows. Given is the model

Y = β0 + β1D1 + · · · + βk−1Dk−1 + ε

where β0 is the intercept, and Dj , j = 1, . . . , k−1, are the dummy variables representing
a categorical variable with k categories. Category k is the base category. Alternatively,
the model can be formulated as

Y = β0 + β1D1 + · · · + βk−1Dk−1 + βkDk + ε

where βk is constrained to zero. Now let

c = (β1 + · · · + βk)/k

and define
β̃0 = β0 + c and β̃j = βj − c, j = 1, . . . , k

The transformed model is then

Y = β̃0 + β̃1D1 + · · · + β̃kDk + ε,

k∑
j=1

β̃j = 0

The transformed model is mathematically equivalent to the untransformed model. For
example, the two models produce identical predictions. The variance–covariance matrix
for the transformed model can be obtained by applying the general formula for weighted
sums of random variables given in, e.g., Mood, Graybill, and Boes (1974, 179). Models
with several sets of dummy variables can be transformed by applying the formulas to
each set separately. Furthermore, the transformation can be applied to the interaction

8. In fact, the approach by Gardeazabal and Ugidos (2004) is simply what is known as the “effects
coding” (Hardy 1993, 64–71) or the “deviation contrast coding” (Hendrickx 1999) approach.
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terms between a categorical and a continuous variable in an analogous manner except
that now c is added to the main effect of the continuous variable instead of the intercept.
The application of the transform is not restricted to linear regression. It can be used
with any model as long as the effects of the dummies are expressed as additive effects.

Other restrictions to identify the contribution of a categorical variable to the unex-
plained part of the decomposition are imaginable. For example, the restriction could
be

k∑
j=1

wj β̃j = 0

where wj are weights proportional to the relative frequencies of the categories, so the
coefficients reflect deviations from the overall sample mean (Kennedy 1986; Haisken-
DeNew and Schmidt 1997). Hence, there is still some arbitrariness in the method by
Gardeazabal and Ugidos (2004) and Yun (2005b).

3 The oaxaca command

The methods presented above are implemented with a new command called oaxaca.
The command first estimates the group models and possibly a pooled model over both
groups using regress ([R] regress) or any user-specified estimation command. suest
([R] suest) is then applied, if necessary, to determine the combined variance–covariance
matrix of the models, and the group means of the predictors are estimated by using
mean ([R] mean). Finally, the various decomposition results and their standard errors
(and covariances) are computed based on the combined parameter vector and variance–
covariance matrix of the models’ coefficients and the mean estimates.9 The standard
errors are obtained by the delta method.10

9. The covariances between the models’ coefficients and the mean estimates are assumed to be zero
in any case. This assumption can be violated in misspecified models.

10. nlcom ([R] nlcom) could be used to compute the variance–covariance matrix of the decomposition
results. However, nlcom employs general methods based on numerical derivatives and is slow if the
models contain many covariates. oaxaca therefore has its own specific implementation of the delta
method based on analytic derivatives.
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3.1 Syntax

The syntax of the oaxaca command is

oaxaca depvar
[
indepvars

] [
if
] [

in
] [

weight
]
, by(groupvar)

[
swap

detail
[
(dlist)

]
adjust(varlist) threefold

[
(reverse)

]
weight(#

[
#. . .

]
)

pooled
[
(model opts)

]
omega

[
(model opts)

]
reference(name) split

x1(names and values) x2(names and values) categorical(clist)

svy
[
(
[
vcetype

] [
, svy options

]
)
]
vce(vcetype) cluster(varname)

fixed
[
(varlist)

] [
no
]
suest nose model1(model opts) model2(model opts)

noisily xb level(#) eform nolegend
]

where depvar is the outcome variable of interest (e.g., log wages) and indepvars are
predictors (e.g., education, work experience). groupvar identifies the groups to be com-
pared. oaxaca typed without arguments replays the last results.

fweights, aweights, pweights, and iweights are allowed; see [U] 11.1.6 weight.
Furthermore, bootstrap, by, jackknife, statsby, and xi are allowed; see [U] 11.1.10
prefix, commands. Weights are not allowed with the bootstrap prefix, and aweights
are not allowed with the jackknife prefix. vce(), cluster(), and weights are not
allowed with the svy option.

3.2 Options

Main

by(groupvar) specifies the groupvar that defines the two groups to be compared. by()
is required.

swap reverses the order of the groups.

detail
[
(dlist)

]
specifies that the detailed results for the individual predictors be re-

ported. Use dlist to subsume the results for sets of regressors (results for variables
not appearing in dlist are listed individually). The syntax for dlist is

name:varlist
[
, name:varlist . . .

]
The usual shorthand conventions apply to the varlists specified in dlist (see help
varlist; additionally, cons is allowed). For example, specify detail(exp:exp*)
to subsume exp (experience) and exp2 (experience squared). name is any valid Stata
name; it labels the set.

adjust(varlist) causes the differential to be adjusted by the contribution of the specified
variables before performing the decomposition. This is useful, for example, if the
specified variables are selection terms. adjust() is not needed for heckman models.
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Decomposition type

threefold
[
(reverse)

]
computes the threefold decomposition. This is the default

unless weight(), pooled, omega, or reference() is specified. The decomposition
is expressed from the viewpoint of group 2 (B). Specify threefold(reverse) to
express the decomposition from the viewpoint of group 1 (A).

weight(#
[
# ...

]
) computes the twofold decomposition, where #

[
# ...

]
are the

weights given to group 1 (A) relative to group 2 (B) in determining the reference
coefficients (weights are recycled if there are more coefficients than weights). For
example, weight(1) uses the group 1 coefficients as the reference coefficients, and
weight(0) uses the group 2 coefficients.

pooled
[
(model opts)

]
computes the twofold decomposition by using the coefficients

from a pooled model over both groups as the reference coefficients. groupvar is
included in the pooled model as an additional control variable. Estimation details
can be specified in parentheses; see the model1() option below.

omega
[
(model opts)

]
computes the twofold decomposition by using the coefficients from

a pooled model over both groups as the reference coefficients (excluding groupvar
as a control variable in the pooled model). Estimation details can be specified in
parentheses; see the model1() option below.

reference(name) computes the twofold decomposition by using the coefficients from a
stored model. name is the name under which the model was stored; see [R] estimates
store. Do not combine the reference() option with the bootstrap or jackknife
methods.

split causes the unexplained component in the twofold decomposition to be split into
a part related to group 1 (A) and a part related to group 2 (B). split is effective
only if specified with weight(), pooled, omega, or reference().

Only one of threefold, weight(), pooled, omega, and reference() is allowed.

X-values

x1(names and values) and x2(names and values) provide custom values for specific
predictors to be used for group 1 (A) and group 2 (B) in the decomposition. The
default is to use the group means of the predictors. The syntax for names and values
is

varname
[
=
]

value
[ [

,
]

varname
[
=
]

value . . .
]

For example, x1(educ 12 exp 30).
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categorical(clist) identifies sets of dummy variables representing categorical variables
and transforms the coefficients so that the results of the decomposition are invariant
to the choice of the (omitted) base category (deviation contrast transform). The
syntax for clist is

varlist
[
, varlist . . .

]
Each varlist must contain a variable for the base category (that is, the base category
indicator must exist in the data). The transform can also be applied to interactions
between a categorical and a continuous variable. Specify the continuous variable in
parentheses at the end of the list in this case, i.e.,

varlist (varname)
[
, . . .

]
and also include a list for the main effects. For example,

categorical(d1 d2 d3, xd1 xd2 xd3 (x))

where x is the continuous variable, and d1, d2, etc., and xd1, xd2, etc., are the
main effects and interaction effects. The code for implementing the categorical()
option has been taken from the user-written devcon command (Jann 2005a).

SE/SVY

svy
[
(
[
vcetype

] [
, svy options

]
)
]

executes oaxaca while accounting for the survey
settings identified by svyset (this is essentially equivalent to applying the svy prefix
command, although the svy prefix is not allowed with oaxaca because of some
technical issues). vcetype and svy options are as described in [SVY] svy.

vce(vcetype) specifies the type of standard errors reported. vcetype can be analytic
(the default), robust, cluster clustvar, bootstrap, or jackknife; see
[R] vce option.

cluster(varname) adjusts standard errors for intragroup correlation; this is Stata 9
syntax for vce(cluster clustvar).

fixed
[
(varlist)

]
identifies fixed regressors (all if specified without argument; an exam-

ple for fixed regressors is experimental factors). The default is to treat regressors
as stochastic. Stochastic regressors inflate the standard errors of the decomposition
components.[

no
]
suest prevents or enforces using suest to obtain the covariances between the mod-

els or groups. suest is implied by pooled, omega, reference(), svy, vce(cluster
clustvar), and cluster(). Specifying nosuest can cause biased standard errors and
is strongly discouraged.

nose suppresses the computation of standard errors.
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Model estimation

model1(model opts) and model2(model opts) specify the estimation details for the two
group-specific models. The syntax for model opts is[

estcom
] [

, addrhs(spec) estcom options
]

where estcom is the estimation command to be used and estcom options are options
allowed by estcom. The default estimation command is regress. addrhs(spec) adds
spec to the right-hand side of the model. For example, use addrhs() to add extra
variables to the model. Here are some examples:

model1(heckman, select(varlist s) twostep)

model1(ivregress 2sls, addrhs((varlist2=varlist iv)))

oaxaca uses the first equation for the decomposition if a model contains multiple
equations.

Furthermore, coefficients that occur in one of the groups are assumed to be zero
for the other group. It is important, however, that the associated variables contain
nonmissing values for all observations in both groups.

noisily displays the models’ estimation output.

Reporting

xb displays a table containing the regression coefficients and predictor values on which
the decomposition is based.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level.

eform specifies that the results be displayed in exponentiated form.

nolegend suppresses the legend for the regressor sets defined by the detail() option.

(Continued on next page)
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3.3 Saved results

Scalars
e(N) number of observations e(N 1) number of obs. in group 1
e(N clust) number of clusters e(N 2) number of obs. in group 2

Macros
e(cmd) oaxaca e(legend) definitions of regressor sets
e(depvar) name of dependent variable e(adjust) names of adjustment variables
e(by) name of group variable e(fixed) names of fixed variables
e(group 1) value defining group 1 e(suest) suest, if suest was used
e(group 2) value defining group 2 e(wtype) weight type
e(title) title in estimation output e(wexp) weight expression
e(model) type of decomposition e(clustvar) name of cluster variable
e(weights) weights specified in weight() e(vce) vcetype specified in vce()
e(refcoefs) equation name used in e(b0) e(vcetype) title used to label Std. Err.

for the reference coefficients e(properties) b V
e(detail) detail, if detailed results

were requested

Matrices
e(b) decomposition results e(b0) coefficients and X-values
e(V) variance matrix of e(b) e(V0) variance matrix of e(b0)

Functions
e(sample) marks estimation sample

4 Examples

Threefold decomposition

The standard application of the Blinder–Oaxaca technique is to divide the wage gap
between, say, men and women into a part that is explained by differences in determinants
of wages, such as education or work experience, and a part that cannot be explained
by such group differences. An example using data from the Swiss Labor Market Survey
1998 (Jann 2003) is as follows:

. use oaxaca, clear
(Excerpt from the Swiss Labor Market Survey 1998)

. oaxaca lnwage educ exper tenure, by(female) noisily

Model for group 1

Source SS df MS Number of obs = 751
F( 3, 747) = 101.14

Model 49.613308 3 16.5377693 Prob > F = 0.0000
Residual 122.143834 747 .163512495 R-squared = 0.2889

Adj R-squared = 0.2860
Total 171.757142 750 .229009522 Root MSE = .40437

lnwage Coef. Std. Err. t P>|t| [95% Conf. Interval]

educ .0820549 .0060851 13.48 0.000 .070109 .0940008
exper .0098347 .0016665 5.90 0.000 .0065632 .0131062

tenure .0100314 .0020397 4.92 0.000 .0060272 .0140356
_cons 2.24205 .0778703 28.79 0.000 2.08918 2.394921
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Model for group 2

Source SS df MS Number of obs = 683
F( 3, 679) = 40.34

Model 33.5197344 3 11.1732448 Prob > F = 0.0000
Residual 188.08041 679 .276996185 R-squared = 0.1513

Adj R-squared = 0.1475
Total 221.600144 682 .324926897 Root MSE = .5263

lnwage Coef. Std. Err. t P>|t| [95% Conf. Interval]

educ .0877579 .0087108 10.07 0.000 .0706546 .1048611
exper .0131074 .0028971 4.52 0.000 .0074191 .0187958

tenure .0036577 .0035374 1.03 0.301 -.0032878 .0106032
_cons 2.097806 .1091691 19.22 0.000 1.883457 2.312156

Blinder-Oaxaca decomposition Number of obs = 1434

1: female = 0
2: female = 1

lnwage Coef. Std. Err. z P>|z| [95% Conf. Interval]

Differential
Prediction_1 3.440222 .0174874 196.73 0.000 3.405947 3.474497
Prediction_2 3.266761 .0218522 149.49 0.000 3.223932 3.309591

Difference .1734607 .027988 6.20 0.000 .1186052 .2283163

Decomposit~n
Endowments .0852798 .015693 5.43 0.000 .0545222 .1160375

Coefficients .082563 .0255804 3.23 0.001 .0324263 .1326996
Interaction .005618 .010966 0.51 0.608 -.0158749 .0271109

As is evident from the example, oaxaca first estimates two group-specific regression
models and then performs the decomposition (the noisily option causes the group
models’ results to be displayed and is specified in the example for illustration). The
default decomposition performed by oaxaca is the threefold decomposition (2). To
compute the reverse threefold decomposition (3), specify threefold(reverse).

The decomposition output reports the mean predictions by groups and their dif-
ference in the first panel. In our sample, the mean of log wages (lnwage) is 3.44 for
men and 3.27 for women, yielding a wage gap of 0.17. In the second panel of the de-
composition output, the wage gap is divided into three parts. The first part reflects
the mean increase in women’s wages if they had the same characteristics as men. The
increase of 0.085 in the example indicates that differences in years of education (educ),
work experience (exper), and job tenure (tenure) account for about half the wage gap.
The second term quantifies the change in women’s wages when applying the men’s co-
efficients to the women’s characteristics. The third part is the interaction term that
measures the simultaneous effect of differences in endowments and coefficients.
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Twofold decomposition

Alternatively, the twofold decomposition (4) can be requested, where weight(), pooled,
or omega determines the choice of the reference coefficients. For example, weight(1)
corresponds to (5), and weight(0) corresponds to (6). omega causes the coefficients
from a pooled model over both samples to be used as the reference coefficients, which
is equivalent to Oaxaca and Ransom’s approach based on (7). The pooled option also
causes the coefficients from a pooled model to be used, but now the pooled model also
contains a group membership indicator. Based on the argumentation outlined in section
2, my suggestion is to use pooled rather than omega.

For our example data, the results after using the pooled option are as follows:

. oaxaca lnwage educ exper tenure, by(female) pooled

Blinder-Oaxaca decomposition Number of obs = 1434

1: female = 0
2: female = 1

Robust
lnwage Coef. Std. Err. z P>|z| [95% Conf. Interval]

Differential
Prediction_1 3.440222 .0174586 197.05 0.000 3.406004 3.47444
Prediction_2 3.266761 .0218042 149.82 0.000 3.224026 3.309497

Difference .1734607 .0279325 6.21 0.000 .118714 .2282075

Decomposit~n
Explained .089347 .0137531 6.50 0.000 .0623915 .1163026

Unexplained .0841137 .025333 3.32 0.001 .034462 .1337654

Again the conclusion is that differences in endowments account for about half the wage
gap.11

A further possibility is to provide a stored reference model by using the reference()
option. For example, for the decomposition of the wage gap between blacks and whites,
the reference model is sometimes estimated based on all races, not just blacks and whites.
Then the reference model would have to be estimated first using all observations and
then be provided to oaxaca via the reference() option.

Exponentiated results

The results in the example above are expressed on the logarithmic scale (remember that
log wages are used as the dependent variable), and it might be sensible to retransform
the results to the original scale (here Swiss francs) by using the eform option:

11. Unlike the first example, robust standard errors are reported (oaxaca uses suest to estimate the
joint variance matrix for all coefficients if pooled is specified; suest implies robust standard errors).
To compute robust standard errors in the first example, you would have to add vce(robust) to the
command.
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. oaxaca, eform

Blinder-Oaxaca decomposition Number of obs = 1434

1: female = 0
2: female = 1

Robust
lnwage exp(b) Std. Err. z P>|z| [95% Conf. Interval]

Differential
Prediction_1 31.19388 .5446007 197.05 0.000 30.14454 32.27975
Prediction_2 26.22626 .5718438 149.82 0.000 25.12908 27.37135

Difference 1.189414 .0332234 6.21 0.000 1.126048 1.256346

Decomposit~n
Explained 1.09346 .0150385 6.50 0.000 1.064379 1.123336

Unexplained 1.087753 .027556 3.32 0.001 1.035063 1.143125

The (geometric) means of wages are 31.2 Swiss francs for men and 26.2 Swiss francs for
women, which amounts to a difference of 18.9%. Adjusting women’s endowments levels
to the levels of men would increase women’s wages by 9.3%. A gap of 8.8% remains
unexplained.

Survey estimation

oaxaca supports complex survey estimation, but svy has to be specified as an option
and is not allowed as a prefix command (which does not restrict functionality). For
example, the wt variable provides sampling weights for the Swiss Labor Market Survey
1998. The weights (and strata or primary sampling units [PSUs], if there were any) can
be taken into account as follows:

(Continued on next page)
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. svyset [pw=wt]

pweight: wt
VCE: linearized

Single unit: missing
Strata 1: <one>

SU 1: <observations>
FPC 1: <zero>

. oaxaca lnwage educ exper tenure, by(female) pooled svy

Blinder-Oaxaca decomposition

Number of strata = 1 Number of obs = 1647
Number of PSUs = 1647 Population size = 1657.1804

Design df = 1646

1: female = 0
2: female = 1

Linearized
lnwage Coef. Std. Err. t P>|t| [95% Conf. Interval]

Differential
Prediction_1 3.405696 .0226311 150.49 0.000 3.361307 3.450085
Prediction_2 3.193847 .0276463 115.53 0.000 3.139622 3.248073

Difference .2118488 .035728 5.93 0.000 .1417718 .2819259

Decomposit~n
Explained .1107614 .0189967 5.83 0.000 .0735011 .1480216

Unexplained .1010875 .0315911 3.20 0.001 .0391246 .1630504

Detailed decomposition

Use the detail option to compute the individual contributions of the predictors to
the components of the decomposition. detail specified without argument reports the
contribution of each predictor individually. Alternatively, one can define groups of
predictors for which the results can be subsumed in parentheses. Furthermore, one might
apply the deviation contrast transform to dummy-variable sets so that the contribution
of a categorical predictor to the unexplained part of the decomposition does not depend
on the choice of the base category. For example,



B. Jann 473

. tabulate isco, nofreq generate(isco)

. oaxaca lnwage educ exper tenure isco2-isco9, by(female) pooled
> detail(exp_ten: exper tenure, isco: isco?) categorical(isco?)

Blinder-Oaxaca decomposition Number of obs = 1434

1: female = 0
2: female = 1

Robust
lnwage Coef. Std. Err. z P>|z| [95% Conf. Interval]

Differential
Prediction_1 3.440222 .0174589 197.05 0.000 3.406003 3.474441
Prediction_2 3.266761 .0218047 149.82 0.000 3.224025 3.309498

Difference .1734607 .0279331 6.21 0.000 .118713 .2282085

Explained
educ .0395615 .0097334 4.06 0.000 .0204843 .0586387

exp_ten .0399316 .0089081 4.48 0.000 .022472 .0573911
isco -.0056093 .012445 -0.45 0.652 -.0300009 .0187824
Total .0738838 .017772 4.16 0.000 .0390513 .1087163

Unexplained
educ -.1324971 .1788045 -0.74 0.459 -.4829475 .2179533

exp_ten .0129955 .0400811 0.32 0.746 -.0655619 .0915529
isco -.0159367 .0296549 -0.54 0.591 -.0740592 .0421858
_cons .2350152 .195018 1.21 0.228 -.1472132 .6172435
Total .0995769 .0266887 3.73 0.000 .047268 .1518859

exp_ten: exper tenure
isco: isco1 isco2 isco3 isco4 isco5 isco6 isco7 isco8 isco9

Differences in education and combined differences in experience and tenure each ac-
count for about half the explained part of the outcome differential, whereas occupational
segregation based on the nine major groups of the International Standard Classification
of Occupations (ISCO-88) does not seem to matter much.

Selectivity bias adjustment

In labor-market research, it is common to include a correction for sample-selection
bias in the wage equations based on the procedure by Heckman (1976, 1979). Wages
are observed only for people who are participating in the labor force, and this might
be a selective group. The most straightforward approach to account for selection
bias in the decomposition is to deduct the selection effects from the overall differen-
tial and then apply the standard decomposition formulas to this adjusted differential
(Reimers [1983]; an alternative approach is followed by Dolton and Makepeace [1986];
see Neuman and Oaxaca [2004] for an in-depth treatment of this issue).

(Continued on next page)
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If oaxaca is used with heckman, the decomposition is automatically adjusted for se-
lection. For example, the following command includes a selection correction in the wage
equation for women and decomposes the adjusted wage gap. Labor-force participation
(lfp) is modeled as a function of age, age squared, marital status, and the number of
children at ages 6 or below and at ages 7 to 14.

. oaxaca lnwage educ exper tenure, by(female) model2(heckman, twostep
> select(lfp = age agesq married divorced kids6 kids714))

Blinder-Oaxaca decomposition Number of obs = 1434

1: female = 0
2: female = 1

lnwage Coef. Std. Err. z P>|z| [95% Conf. Interval]

Differential
Prediction_1 3.440222 .0174874 196.73 0.000 3.405947 3.474497
Prediction_2 3.275643 .0281554 116.34 0.000 3.220459 3.330827

Difference .164579 .0331442 4.97 0.000 .0996176 .2295404

Decomposit~n
Endowments .0858436 .0157566 5.45 0.000 .0549613 .116726

Coefficients .0736812 .031129 2.37 0.018 .0126695 .134693
Interaction .0050542 .0109895 0.46 0.646 -.0164849 .0265932

Comparing the results with the output in the first example reveals that the uncorrected
wages of women are slightly biased downward (3.267 versus the selectivity-corrected
3.276), and the wage gap is somewhat overestimated (0.173 versus the corrected 0.165).

It is sometimes sensible to compute the selection variables outside of oaxaca and then
use the adjust() option to correct the differential (although here the selection variables
are assumed known, which might slightly bias the standard errors). For example,
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. probit lfp age agesq married divorced kids6 kids714 if female==1

(output omitted )

. predict xb if e(sample), xb
(759 missing values generated)

. generate mills = normalden(-xb) / (1 - normal(-xb))
(759 missing values generated)

. replace mills = 0 if female==0
(759 real changes made)

. oaxaca lnwage educ exper tenure mills, by(female) adjust(mills)

Blinder-Oaxaca decomposition Number of obs = 1434

1: female = 0
2: female = 1

lnwage Coef. Std. Err. z P>|z| [95% Conf. Interval]

Differential
Prediction_1 3.440222 .0174874 196.73 0.000 3.405947 3.474497
Prediction_2 3.266761 .0218659 149.40 0.000 3.223905 3.309618

Difference .1734607 .0279987 6.20 0.000 .1185843 .2283372
Adjusted .164579 .033215 4.95 0.000 .0994788 .2296792

Decomposit~n
Endowments .0858436 .0157766 5.44 0.000 .0549221 .1167651

Coefficients .0736812 .0312044 2.36 0.018 .0125217 .1348407
Interaction .0050542 .0110181 0.46 0.646 -.0165409 .0266493

Using oaxaca with nonstandard models

You can also use oaxaca, for example, with binary outcome variables and employ a
command such as logit to estimate the models. You have to understand, however,
that oaxaca will always apply the decomposition to the linear predictions from the
models (based on the first equation if a model contains multiple equations). With
logit models, for example, the decomposition computed by oaxaca is expressed in
terms of log odds and not in terms of probabilities or proportions. Approaches to
decompose differences in proportions are provided by, e.g., Gomulka and Stern (1990),
Fairlie (2005), or Yun (2005a). Also see Sinning, Hahn, and Bauer (in this issue) if
you are interested in decomposing group differences in categorical or limited outcome
variables.

For binary outcomes, as an anonymous reviewer of this article pointed out, a con-
venient alternative approach might be to use oaxaca with the linear probability model.
Here the decomposition results are on the probability scale (see, e.g., Long [1997, 35–40]
or Wooldridge [2003, 240–245] on the pros and cons of the linear probability model).

(Continued on next page)
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