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1 Background

This document describes the statistical framework of the systematic review and meta-analysis
conducted in [1]. Briefly, our aim is to compare HIV viral loads between two groups:

• HIV only group: individuals under HIV antiretroviral therapy (ART) who are not
co-infected with another sexually transmitted infection (STI)

• Co-infected group: individuals under HIV therapy who are co-infected with another
STI

We want to assess, based on data collected from the systematic review, if there is an HIV
viral load increase, at any given anatomical site, when an HIV-positive individual on ART is
co-infected with another given STI.

2 Data from studies

Comparing HIV infectivity between the two groups can be done by either observing the num-
ber of (linked) transmissions within discordant couples or use the HIV viral load (preferably in
genital secretion because we consider only sexual transmission here) as a proxy for infectious-
ness.

The systematic review retrieved different type of studies and each study has a particular data
set. All eligible articles measured HIV viral load and none were transmissions studies.

HIV viral loads assays can measure different kind of viral signature: RNA cell-associated, RNA
cell-free or DNA. Our model does not distinguish between RNA ca, RNA cf or DNA. However,
this constraint should have a limited effect because we do have a study-level effect in our model
(see Model section below). Most of the studies measured RNA levels (see Table 1 of main text
[1]).

The common unit we use for all HIV viral loads is copies per millilitre (copies/mL).

Assays have detection limit which varies across studies. The range is from the order of 10
copies/mL to the order of 1000 copies/mL. (It is even possible to have different detection limit
within a study because different assays were used for different anatomical sites)

Finally, HIV viral load was measured across different anatomical sites: blood plasma and
genital secretions (semen for males, vagina or cervix for females). See Table 1 of main text for
a summary.

2.1 Continuous outcomes at the individual level

Eligible studies where the HIV viral load is given for every participant are labeled “continuous”
studies. We can have both a cross-sectional (one observation per individual) or longitudinal
(multiple observations per individuals, usually through regular clinic visits) designs. Moreover,
at a given visit, HIV viral load may have been measured from several anatomical sites.
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2.2 Dichotomous outcomes

The systematic review also retrieved studies where only dichotomous outcomes have been re-
ported. Typically, the dichotomous outcome is the HIV viral load being above an predefined
threshold. The threshold is either chosen arbitrarily by the investigators or is implied by the
detection limit of the assay. Hence, the data is represented with a 2 by 2 table counting the
individuals, in the HIV only group and the co-infected one, having a viral load above or below
a predetermined threshold.

3 Model

In order to have the best representation of the various random effects involved across all eligible
studies retrieved from the systematic review, we choose a Bayesian hierarchical model as the
framework for our meta-analysis[9].

Our data is represented by a HIV viral load as a function of the study s, the individual i of
this study, her/his vth visit (for longitudinal studies), the potential co-infecting STI d and the
anatomical site a from where the HIV viral load was measured.

Data Observed = V [s, i, v, d, a] = exp
(
V L[s, i, v, d, a]

)
The viral load variable V is assumed to be on the linear scale, whereas V L is on the natural log
scale1. This observed viral load is assumed to result from several effects, described below.

3.1 Universal Baseline HIV Viral Load

It is assumed that there is a ‘universal’ baseline viral load level B for individuals on ART and
not co-infected with any other STI than HIV. The unit of universal baseline viral load is on
the natural log scale and is assumed to vary according to the anatomical site from where it
is measured, hence the notation BA. We assume an uninformative uniform prior distributed
between 0 and 20 (e20 ' 5× 108):

BA[a] ∼ U(0, 20)

for every anatomical site a.

3.2 Hierarchy without co-infection

From the universal level BA for a given anatomical site, random effects for study, individual
and visit levels are added in a hierarchical model.

For a given study s, the mean log HIV viral load is assumed to be normally distributed around
the universal baseline value:

Bstudy[s, a] ∼ N (BA[a];σB,study[a])

1In the main text [1], parameters values reported were rescaled in the log base 10 as it is ubiquitous in the
medical literature
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Then, similarly, for the ith individual in this study, her/his baseline HIV viral load is distributed
around the study-level value:

Bind[s, i, a] ∼ N (Bstudy[s, a];σB,ind[a])

The HIV viral load measured at the vth visit of individual i (if the study is not longitudinal,
there is only one visit) is distributed around the value at the individual-level:

Bvis[s, i, v, a] ∼ N (Bind[s, i, a];σB,vis[a])

Hence, for an individual not co-infected with any other STI than HIV (coded as ‘d = ∅’)

V L[s, i, v, ∅, a] = Bvis[s, i, v, a]

3.3 Hierarchy with co-infection

When the individual is co-infected with another STI d, the effect of this co-infection on the
viral load is modelled by the following variables:

• α[a]: change in baseline viral load at site a following co-infection with any STI

• δ[d]: change in baseline viral load following co-infection with STI d, measured at any
anatomical site

• γ[d, a]: change in baseline viral load following co-infection with STI, taking into account
the correlation between the STI and its effect on a given anatomical site

Priors for these adjustments are again chosen in a uninformative way:

α[a] ∼ N (0, σα[a])

δ[d] ∼ N (δ̄, σδ[d])

γ[d, a] ∼ N (0, σγ[d, a])

The variable δ̄ represents the average effect of STI co-infection on HIV VL for an individual
on ART, irrespective of the anatomical considered. It is assumed its prior distribution is
uninformative:

δ̄ ∼ U(−10; 10)

Priors for the variances are all set to the same uninformative truncated normal distribution
[3]:

σ• ∼ NR+(0, 2)

Similarly, a hierarchical structure is introduced to account for variabilities at the study, indi-
vidual and visit levels:

αstudy[s, a] ∼ N (α[a];σα,study[a])

αind[s, i, a] ∼ N (αstudy[s, a];σα,ind[a])
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δstudy[s, d] ∼ N (δ[d];σδ,study[d])

δind[s, i, d] ∼ N (δstudy[s, d];σδ,ind[d])

γstudy[s, d, a] ∼ N (γ[d, a];σγ,study[d, a])

γind[s, i, d, a] ∼ N (γstudy[s, d, a];σγ,ind[d, a])

Hence, for an individual co-infected with STI d, the log HIV viral load measured at anatomical
site a is defined as:

V L[s, i, v, d, a] = Bvis[s, i, v, a]

+αvis[s, i, v, a]

+ δvis[s, i, v, d]

+ γvis[s, i, v, d, a]

All variables being normally distributed, we have

V L[s, i, v, d, a] ∼ N (Ω, η)

with
Ω = Ω[s, i, v, d, a] = Bind[s, i, a] + αind[s, i, a] + δind[s, i, d] + γind[s, i, d, a]

η2 = η2[d, a] = σ2
B,vis[a] + σ2

α,vis[a] + σ2
δ,vis[d] + σ2

γ,vis[d, a]

3.4 Dichotomous observations

If the observation is dichotomous with threshold τ , the binary variable D[s, i, v, d, a] is valued
at 1 when the HIV viral load is above the threshold, 0 otherwise. We assume a Bernoulli
distribution for the dichotomous variable D:

D[s, i, v, d, a] ∼ Bernoulli

(
`

(
V L[s, i, v, d, a]− τ

ε

))
with `(x) = 1/(1 + e−x) and ε a tiny number (set at 0.01). In the dichotomous observation
case, V L is not observed, but is a latent variable [2].

The full hierarchical structure of the model is illustrated in Figure 1.

3.5 Effect size variable

In order to have an easily interpretable effect-size, we define

ES[d, a] = exp(α[a] δ[d] γ[d, a])
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BA[a] ↵[a] �[d, a] �[d]

Bstudy[s, a] ↵study[s, a] �study[s, d, a] �study[s, d]

Bind[s, i, a] ↵ind[s, i, a] �ind[s, i, d, a] �ind[s, i, d]

Bvis[s, i, v, a] ↵vis[s, i, v, a] �vis[s, i, v, d, a] �vis[s, i, v, d]

V L[s, i, v, d, a] D[s, i, v, d, a]

Universal

Study

Individual

Visit

Data

Anatomical site dependent

STI dependent

when dichotomous

Figure 1: Hierarchical model. The horizontal shaded rectangles represent the various hierar-
chical levels: at the top the “universal” level, followed by finer levels i.e. study-,individual and
visit-levels. The last rectangle represents the data used for Bayesian inference. The two vertical
rectangles gather parameters that depend on anatomical sites and/or STIs. The solid black
arrows show the hierarchical structure between parameters (see main text). The red dashed ar-
rows illustrate Bayesian inference only when the data is associated with a STI co-infection. The
black dashed arrow depicts the use of latent variables when the data is dichotomous. Notations
are the same as in the main text.

The HIV log viral load at the highest hierarchical level, in the presence of co-infection d and
measured at anatomical site a is given by

V L[d, a] = BA[a] + α[a] + δ[d] + γ[d, a]

Expressing the viral load on the linear scale:

V [d, a] = eBA[a]ES[d, a]
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Hence, ES[d, a] is the multiplicative factor affecting the (linear) baseline HIV viral load at
anatomical site a when co-infected with STI d.

When ES[d, a] = 1, no change in HIV viral load is expected; ES[d, a] = 2 means the sexually
transmitted co-infection d is expected to double HIV shedding at anatomical site a.

Another interpretation of the effect-size (widespread in the medical literature) is to consider
the quantity log(ES)/ log(10) that represents the HIV viral load difference, in log10 copies/mL,
between a typical HIV positive individual on ART who has another sexually transmitted co-
infection and an individual who has not.

Effect size for a given study

HIV viral loads measured are structurally distinguished by anatomical site and co-infection.
Hence, in this framework, the variable (named ESstudy) that represents co-infection effect on
HIV viral load of a given study must specify which anatomical site and STI are considered. So
for study s we define such effect by:

ESstudy[s] = exp
(
α[s, a] δ[s, d] γ[s, d, a]

)
It is also possible to evaluate, for a given study, the mean effect of STI co-infection on HIV
viral load across all anatomical sites and infections considered in that study. Hence, we define
such mean study effect by

ESavg study[s] = exp

(
1

AD

a=A,d=D∑
a,d=1

α[s, a] δ[s, d] γ[s, d, a]

)

with A (resp. D) the number of anatomical sites (resp. STIs) considered in study s.

4 Implementation check

The model described above is implemented in R[7], using the package RStan[8] for sampling
the Markov chains.

In order to test the implementation is free of errors that would affect parameter estimations,
we generated simulated data from known parameter values and checked they are correctly
estimated by the hierarchical model.

The simulated data were designed to be similar to the real data, that is a hierarchical structure
universal/study/individuals/visits and mix of continuous and dichotomous studies, anatomical
sites, STIs. The only major difference with the real data set is the simulated one is much
smaller, in order to achieve a faster convergence and hence a more accurate estimation of the
known parameters. Because the aim is to check the implementation, working on a smaller
data set is not an issue. The simulated data set was created with 3 continuous studies, 2
dichotomous ones; each study had a maximum of 35 individuals; each individual had 2 visits.
These studies were simulated with 3 STIs and 3 anatomical sites. The STI prevalence was 0.33
for all studies.

The estimation of universal-level parameters BA, α, δ and γ is shown in Figure 2 and confirms
the implementation is likely free of major errors impacting estimation of parameters.
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Figure 2: Model sanity check. Estimation of universal-level parameters from simulated
data.The shaded square represents the ‘true’ level of the universal-level parameter. The filled
diamond is the estimated parameter mean and the vertical segment represents the 95% credible
interval. The open circles represent the study-level parameters (this is for information only:
the study-level values may be sampled relatively far from the universal mean, affecting the
estimation of the universal level value). This fit was done with 3 chains, each having 30,000
iterations (including half for warm-up). Markov chains Monte-Carlo convergence was confirmed
by requiring R̂ < 1.02 for all parameters[4]. STI index 1 represents no co-infection, hence we
always have δ[1] = 1 and γ[1, a] = 1 (for any anatomical site a); this explains why there is
no estimation error for the first point of δ and the first 3 points for γ. ‘True’ values (shaded
squares) are all within the credible intervals and the mean is most of the time very close to this
‘true’ value, comforting an implementation likely free of major errors.
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5 Heterogeneity statistic

In order to assess the effect of heterogeneity between studies, we use the I2 statistic as it is
easily interpretable and ubiquitous in meta-analysis[5].

5.1 Definition

The statistic I2 is defined as [6]:

I2 =
Q− (n− 1)

Q

with Q the Cochrane’s (1954) heterogeneity statistic and n the total number of studies.

In a frequentist, fixed effect framework, we have

Q =
n∑
i=1

wi(yi − µ)2

with yi the estimated effect-size for the ith study, wi = 1/σ2
i the inverse of the of the es-

timated variance of the ith study and µ the summary estimate effect-size when pooling all
studies together for the meta-analysis. Still in this framework (fixed-effect), we have µ =
(
∑
wiyi)/

∑
wi.

If estimates yi are assumed to be normally distributed around µ, then Q has a χ2 distribution
with n− 1 degrees of freedom. Heterogeneity can then be tested, and is usually reported as a
p-value p(χ2 > Q) (a low p-value means significant heterogeneity).

Note that I2 can be negative. In this case, it is reported as 0 (I2 = max(I2; 0))

But it has been reported that Q may mislead because of too little power when dealing with
few studies and too much power when dealing with numerous and large studies[5]. A suggested
alternative is to use I2, especially to assess the effect of heterogeneity on the summary effect
size.

5.2 Bayesian framework

In a Bayesian framework, the definition of Q and I2 is the same. Only the weights wi and µ
require some clarification.

We take wi as the inverse of the estimated variance of the posterior distribution of the effect size
associated with the ith study; and µ is the mean of the posterior distribution of the summary
effect size.

5.3 Sensitivities of I2

For meta-analysis with large variances of the estimated effect sizes, both Q and I2 tend to be
smaller. Indeed – for the same mean value of estimates yi – both Q and I2 decrease as the
estimated variances increase:

∂Q

∂σ2
i

= −
∑
i

(yi − µ)2

σ4
i

< 0
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∂I2

∂σ2
i

=
n− 1

Q2

∂Q

∂σ2
i

< 0

This make sense as I2 describes the percentage of total variation across studies due to genuine
heterogeneity, rather than chance[5]. The larger the variance, the more heterogeneity could be
explained by chance alone.
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