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Supporting Information
A) Forecasting Algorithm

In our model, a digital library is initially built from epidemic curves which are sim-

ulated or obtained from past epidemics or data-assimilation-based methods. Simu-

lated epidemic curves could be generated by different kinds of epidemiology models

like simple ODE models (SEIR) [1, 2], or individual-based models (EpiFast) [3, 4].

In this paper, the digital library contains simulated epidemics curves generated by

running the stochastic version of SEIR model[2] with different parameters to keep

the variability in the system. The Susceptible-Exposed-Infectious-Removed (SEIR)

model is usually represented by a system of differential equations. To take into

account the stochastic nature of infectious disease transmission and to facilitate a

computer simulation to produce daily (or weekly) case counts, the SEIR model has

been extended to a stochastic discrete time SEIR model. In the stochastic SEIR,

daily changes of compartment sizes are sampled from binomial distributions with

corresponding probability parameters determined by transmission rate, the mean

incubation duration, and the mean infectious duration. Each individual is placed

in one, and only one, of the following four states at one time step: Susceptible,

Exposed, Infectious, and Removed. The details can be found in[2].

We have implemented the stochastic SEIR model in a C++ simulation code which

takes initial sizes of the compartments and the aforementioned disease-related pa-

rameters and generates the daily number of infections which can be aggregated to

weekly case counts. We would like to emphasize that our Epi-Evaluator works for

similar time-series prediction data that may be generated by any other method,

either a statistical method or an individual based SEIR model like[4, 5].

To generate our predicted epidemic curve, we pre-select 2205 different models, each

being a combination of transmission rate, mean incubation duration, and mean in-

fectious duration. The transmission rate ranges from 0.1E-5 to 0.5E-5; the mean

incubation duration ranges from 0.9 to 2.9 (days); the mean infectious duration

ranges from 3.1 to 5.1 (days). The initial size of the infectious compartment is set

depending on the surveillance data from CDC for the specific HHS region. All 2205

models and corresponding epidemic curves are stored in a digital library. In the

forecasting process, given a part of the epidemic curve as a time-series from the

surveillance data, the algorithm tries to compare it with all the curves stored in the

digital library and find the best match. The tail of the best-matched curve could be

taken as the predicted epidemic curve, and its corresponding parameters are used

to model the outbreak and predict probable future events about the epidemic (S1

Fig).

To compare a surveillance epidemic curve with the library’s curves and find the

best-matched parameters, we should calculate the distance between the curves. We

use the following measure:

dist
(
y, Z̄P

)
=

√√√√ t∑
j=1

d2
(
y (j) , Z̄P∗ (j)

)
(1)

where j is the time step and t indicates the prediction time on which the tail

of epidemic curve is predicted; Z̄P∗ is the simulation curve in the digital library
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Table 1. Definition of different Distance Functions
Jaccard Euclidean

dJac =

∑n

t=1
(xi−yi)

2∑n

t=1
x2
i
+
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t=1
y2
i
−
∑n

t=1
xi×yi

dEuc =
√∑n

t=1
|xi − yi|2

generated by running SEIR model with parameters P ∗, y (j) is the observed value

from surveillance data and d is a distance function which calculates the distance

between the data points (See[6] for more details).

The goal of this paper is applying the Epi-features and Error Metrics to the out-

put of the forecasting methods to evaluate their performance and compare them

together. To achieve this goal, we consider six different configurations for our al-

gorithm to generate different results and assess them by Epi-features and Error

Metrics to find the best configuration.

The applied configurations are as follows:

• Configuration 1: Jaccard distance function & No trimming.

• Configuration 2: Euclidean distance function & No-trimming.

• Configuration 3: Jaccard distance function & Automatic Trimming

• Configuration 4: Euclidean distance function & Automatic Trimming

• Configuration 5: Jaccard distance function & Ad-hoc Trimming

• Configuration 6: Euclidean distance function & Ad-hoc Trimming

To compare a surveillance epidemic curve with the library’s curves, the configu-

rations 1, 3, and 5 applies Jaccard distance function as the distance function used

in equation 1 while other configurations used Euclidean distance function. Table 1

demonstrates the definition of Jaccard and Euclidean distance functions. The term

”Trimming” which is used in some configurations, refers to the fixing library curves

to follow the initially observed data. As noted, the comparator module matches each

epidemic curve in the digital library with a given observed curve and determines the

best match. Ideally, all the epidemic curves in the digital library should have the

same base count as that of a given observed epidemic curve. The base count refers

to the number of infected case counts in the first week of epidemic (I0). However,

generating a library for every new initial seed would be time-consuming. Therefore,

as an alternative, the Comparator module trims the left portion of digital library

curves so that initial count of the input curve (observed data) is less than or equal

to a section of digital library’s epidemic curves against which comparison distances

are computed. We call this process automatic trimming which searches for the trim-

ming point which is the closest value to the base count and trims the head of the

epidemic curve. However, we figured out that usually, the best trimming point is

the 5th week or near that. Therefore, we suggested the ad-hoc trimming strategy in

which only five data points are trimmed to skip the search time. The trimming value

5 is achieved experimentally and heuristically and has shown acceptable results.

The combination of different trimming strategies with various distance functions

provide a variety of configurations which results in different outputs for forecasting

algorithm.

B) Observations/Proofs on the eliminated error measures

As mentioned before, we have selected MAE, RMSE, MAPE, sMAPE, MdAPE and

MdsAPE as the error measures for evaluating the Epi-features and ignored others
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based on different reasons. Some observations on the eliminated error measures and

their relationships with the considered ones are as follow:

• Observation 1: The magnitude of Normalized Mean Squared Error (NMSE)

between an observed time-series and a predicted one is monotonic of the mag-

nitude of Root Mean Squared Error (RMSE).

Proof: Normalized Mean Squared Error scales the average squared error by

the variance of observed data which is always a fixed number and doesn’t

change by forecasting errors. As the square root function is monotonically

increasing, the NMSE is a monotonic function of RMSE.

• Observation 2: The magnitude of Mean Absolute Scaled Error (MASE)

between an observed time-series and a predicted one is proportional to the

magnitude of Mean Absolute Error (MAE).

Proof: MASE scales absolute error by the average error of one-step Random

walk method that is the average differences of sequential data points of the

observed time-series ( 1
n−1 ×

∑n
i=2 |yi − yi−1| ). As the denominator is always

fixed for each observed time-series, the MASE is always proportional and

monotonic to MAE.

MASE =
1

n

n∑
t=1

| et
1

n−1 ×
∑n

i=2 |yi − yi−1|
| ∝ 1

n

n∑
t=1

|et| = MAE (2)

• Observation 3: The magnitude of Mean Absolute Relative Error(MARE)and

Relative Measures (RelMAE) between Epi-features obtained from the ob-

served and predicted time-series is proportional to the magnitude of Mean

Absolute Error (MAE).

Proof: Mean Absolute Relative Error(MARE) scales the error in each horizon

(ei) with the corresponding error achieved by Random walk method (eRWi).

In order to achieve the Epi-features from the Random walk results, Seasonal-

Adjusted Random Walk method is a better option which generates the en-

tire seasonal epidemic curve. However, the prediction of strongly Seasonal

Random Walk (seasonal random walk without noise) is independent of the

prediction time and generates one unique curve for the remainder of the time-

series. Therefore, the Epi-features calculated for Strong Seasonal Random

Walk is a constant value and independent of the prediction time which means

eRWi = eRW = α . Even Seasonal Random Walk prediction with noise is also

independent of the prediction time and the obtained Epi-features has a fixed

mean value with random noise. Consequently, the ranking achieved by Mean

Absolute Relative Error(MARE) with relation to strongly seasonal adjusted

random walk method is monotonic with the ranking obtained by simple Mean

Absolute Error (MAE). The same reasoning could be used to prove the lemma

for Relative Measures (RMAE).

MARE =
1

n

n∑
t=1

| et
eRWt

| = 1

n

n∑
t=1

|et
α
| ∝ MAE (3)
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RMAE =
MAE

MAERW
=

∑n
t=1 |et|∑n

t=1 |eRWt|
| = 1

n× α

n∑
t=1

|et| ∝ MAE (4)

• Observation 4: Geometric Mean of the Relative Absolute Error (GMRAE) is

proportional to the magnitude of Geometric Mean of Absolute Error (GMAE)

Proof: Using the same reasoning discussed in Observation 3 we have:

GMRAE =

(
n∏

i=1

| et
eRWt

|

)(1/n)

=

(
n∏

i=1

|et
α
|

)(1/n)

∝ GMAE (5)

We have eliminated the Percent Better (PB) from the pool of measures because

it has low sensitivity to reveal the effect of change in methods and parameters[7].

MAAPE is the arctangent of Absolute Percentage ratio to solve the problem of

division by zero by mapping the undefined infinity values of percentage error to

Π/2 which is not informative and doesn’t discriminate the small and large prediction

errors from each other.
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Figures

Figure 1. Figure S1: Summary of Methodology 1) Modeling infectious

disease dynamics and simulating the spread of it. 2) Storing the simulated

epidemic curves (time-series) generated by models with different parameters in

digital Library 3) Categorizing epidemic curve (time-series). 4) Gathering different

surveillance data from various resources. 5) Integrate different data as a

surveillance time-series. 6) Compare surveillance time-series with simulated

time-series stored in digital library. 7) Forecasting the future trend of epidemic

and special events based on the best matched epidemic curve(s) stored in digital

library if any found. And the final stage: Change the forecast results based on

additional information.
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Figure 2. Consensus Ranking over all Epi-features for Region 2.

Figure 3. Consensus Ranking over all Epi-features for Region 3. Methods

1 and 2 could not predict any take-off in this season, while it was occurred in the

observed curve. Therefore, we assigned m+1 as their ranking number for

predicting take-off where m is the number of methods that are compared together.

Figure 4. Consensus Ranking over all Epi-features for Region 4.

Figure 5. Consensus Ranking over all Epi-features for Region 5.

Figure 6. Consensus Ranking over all Epi-features for Region 6. Region

6 didn’t show start-of-flu season which means the ratio of flu-case counts to other

diseases were less than the desired threshold.

Figure 7. Consensus Ranking over all Epi-features for Region 7. Region

7 didn’t have Intensity-Duration which means the amount of the new case counts

never exceeds the desired threshold = 1000.

Figure 8. Consensus Ranking over all Epi-features for Region 8.

Figure 9. Consensus Ranking over all Epi-features for Region 9.

Figure 10. Consensus Ranking over all Epi-features for Region 10.

Region 10 didn’t have Intensity-Duration and Take-off either.


