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Methodological Overview

This manuscript introduces a framework for interpreting Zika Virus (ZIKV) surveillance data in the
face of uncertainty regarding importation, transmission, and reporting rates. In this supplement,
we provide additional methodological details (Sections 1-3), Texas county risk assessments (Section
3), and parameter sensitive analyses (Section 4). Sections 1-3 detail each of the three major steps
of our methodology: (1) estimating county-specific ZIKV transmission and importation risks, (2)
simulating ZIKV outbreaks using a probabilistic branching process ZIKV transmission model, and
(3) analyzing simulations to estimate risk and provide analytic tools for interpreting surveillance
data (Fig 1).

1 Texas County Risk Assessment

1.1 County Importation Rate Estimation

We assumed that ZIKV outbreaks originate with the arrival (importation) of an infectious individual
and built a model to estimate county-level ZIKV importation rates across Texas. The model consists
of two components, estimated separately and then multiplied to obtain county importation rates:
(1) a statewide ZIKV importation rate and (2) county-specific probabilities of receiving the next
Texas importation. The main text describes our estimation of statewide ZIKV importation rates;
here, we detail our methods for estimating county-level probabilities. County-to-county variation
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Figure 1: ZIKV Risk Assessment Framework. The method consists of three steps. First, we
use data-derived models to estimate county-level ZIKV introduction rates and ZIKV transmission
rates. Each estimate is based on a combination of general and county-specific factors. Second, for
every county-risk combination, we simulate 10,000 ZIKV outbreaks using a stochastic branching
process ZIKV transmission model parameterized by the county-level importation and transmission
rate estimates along with several other recently published disease progression estimates. The sim-
ulations track the numbers of autochthonous and imported cases (unreported and reported) and,
based on the total size and maximum daily prevalence, classifies each outbreak as self-limiting or
epidemic. Third, we analyze the simulations to determine (1) robust relationships between the
number of reported cases in a county and the current and future ZIKV threat and (2) surveillance
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in importation rates may be influenced by a number of different environmental, socioeconomic, and
behavioral factors. To build a predictive model consisting of a tractable number of informative
predictors, we fit a maximum entropy model consisting of dozens of possible predictors to historical
arbovirus importation data, and then pruned the model through two rounds of variable selection
to avoid model overfitting.

1.1.1 Historical Arbovirus Data

We analyzed ten years (2002-2012) of Dengue (DENV) importation data (number of importations
in a county) provided by the Texas Department of State Health Services (DSHS), two years of
CHIKYV importation data scraped from online DSHS reports, and the 30 recent ZIKV importations
into Texas counties from January 2, 2016 to April 1, 2016 [1, 2]. Given the geographic and biological
overlap between ZIKV, DENV, and CHIKV, we use historical DENV and CHIKV importation data
to supplement ZIKV importations. We believe this use of DENV and CHIKV data is reasonable,
given that the importation model fit only to DENV and CHIKV data predicts the county ZIKV
importation distribution well [3]. Importation rates should be primarily governed by international
travel into Texas from affected regions and fairly insensitive to differences in modes of transmission
(e.g., different vector species and sexual transmission).

Currently, DENV, CHIKV, ZIKV importation patterns differ most noticeably along the Texas-
Mexico border. Endemic DENV transmission and sporadic CHIKV outbreaks in Mexico historically
have spilled over into neighboring Texas counties. We included DENV and CHIKV importation
data in the model fitting so as to consider potential future importations pressure from Mexico, as
ZIKV cases continue to increase in Mexico.

1.1.2 Sociological Predictor Data

The socioeconomic and demographic predictors for county-level ZIKV importation risk include pop-
ulation size, employment status, population below poverty, modes of commuting to work, and health
insurance coverage, which we obtained from the 2009-2013 American Community Survey 5-year esti-
mates https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/2013/.
In lieu of data regarding travel to ZIKV affected regions (which are not available), we also consid-
ered the size of tourism industry for each county by collecting economic impact of travel data from
Dean Runyan Associates report http://www.deanrunyan.com/doc_library/TXImp.pdf . Our full
model included 72 factors across four categories (Table 4).

1.1.3 Maximum Entropy Model

Let X = {x1,xa, ..., x254} represent the 254 counties of Texas. Suppose a case of ZIKV is introduced
into Texas and let p; be the probability that it occurs in county x;. The vector of p; sums to one
over all counties. We wish to estimate this unknown probability distribution using the historical
import data. The relative probabilities p1, p2, ...pn can be constrained with known mean, variance,
or other moments of some known f;(X) for each county. The functions f;(X) are functions of
socioeconomic, environmental, and travel variables in our case (Table 4). Mathematically, we want
to:
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254

max ( - Zpi logpi) (1a)
i
s.t. Zpifj(mi) = E(f;(X)) Vi (1b)
= 254
Zpi =1 (1c)
i=1
pi =0 Vi (1d)

When we use Shannon’s measure of entropy as the objective (1a), the constraints (1d) are auto-
matically satisfied. The right-hand-side of (1b), E(f;(X)), is estimated by the weighted arithmetic
mean of f;(z1), fj(x2), ..., fj(x254) based on the 254 counties of Texas [4].

1.1.4 Representative Variable Selection

Before solving the maximum entropy model, we first removed duplicate variables or positively cor-
related variables —variables that bring the essentially identical information to the model. Selecting
the representative variables was done with a variation of the facility location problem [5]. The goal
was to select k variables that adequately represent the entire variable set. The k selected factors
would each represent themselves and the remaining 72 — k variables would be represented by ex-
actly one variable from the k selected variables (Eq 2b). The £—oo norm of the difference between
two unit-norm variables, denoted by f;, f; in Table 1, was used to measure the distance between
pairs of variables. This distance measure was derived from the maximum difference in expectations
that the two variables can produce, under any probability distribution. The facility location model
allowed us to select the k& most representative variables (Eq (2c)). The objective function (Eq 2a)
for selecting representative variables was to minimize the distance between the k representative
variables and all the variables in the entire variable set. The results of the representative variable
selection procedure are showed in Fig 2a.

min zn: zn: dijﬂfij (2&)

B A —t

st Y m=1 Vi (2b)
=1

dyi=k (2¢)

j=1
iy <y; Vi, j (2d)
Tjj c {0, 1} VZ,] (26)
y; €{0,1}  Vj (2f)

1.1.5 Predictive Variable Selection

To further streamline the importation model, we considered several different methods for identifying
the most predictive among the selected variables, including hypothesis testing to choose between



Symbol  Definition

fi 72 variables represented by vectors f;,j = 1,2,...72

dij distance between two variables, measured as d;; = H”]fﬁ - ﬁ\\m
i J
Tij x;; = 1 if vector i is represented by vector j; z;; = 0, otherwise;
Yj y; = 1, if vector j is selected as representative vector; y; = 0, otherwise;

Table 1: Representative variable selection. We first applied this method to reduce
our county-level ZIKV importation model from 72 to 20 predictors, and then applied
predictive variable selection to reduce it further to 10 predictors.

nested models [6]. Ultimately, we applied a backward selection approach, outlined in Table 2. In
each iteration, the variable that contributed the least to model performance was dropped, until
all the variables were eliminated. Specifically, we evaluated model performance through cross
validation on out-of-sample data to avoid overfitting the model. For each iteration, 12 years of
DENV and CHIKYV importation cases were divided into two subsets: a 9 year training data set
(for fitting the model) and a 3 year testing data set (for gauging model performance). We ran
each set of variables on 6 randomly selected partitions of the 12 years of available data. From the
6 runs, we calculated the average of the out-of-sample log-likelihood of the model and eliminated
the variable that gave the largest mean out-of-sample log-likelihood. Drops in model performance
was negligible until fewer than 10 variables were included. Results of predictive variable selection
procedure are showed in Fig 2b.

Algorithm Backward Selection

function BACKWARD SELECTION (N)
Set V.=N
While |[V| > 1 do

Set e = argmaz, ¢ yC(S(V —e))

Set V=V — {e}

Record V and C(S(V —e))

O UL W N =

The complete set of representative variables

Return the out-of-sample log-likelihood, averaged over of seven
randomly sampled cross validation folds

S Fit a maximum entropy model given a set of variables f;

Q Z

Table 2: Predictive variable selection algorithm used to select the 10 most informative
variables from among the 20 representative variables selected for the Texas county
ZIKV importation model.



Variables ordered by importance

Total Amount of County Direct Spending on Traveling ($K)
Percentage Population holding Graduate or professional degree
Total Amount of Visitor Tax Receipts(Local) ($K)
County Male Population
Population Commuting to Work with Other Means
Max Temperature of Warmest Month
Percentage Population below Poverty Level
Precipitation of Wettest Quarter
Population without Health Insurance
Population holding Graduate or professional degree

Table 3: Import risk model variables. These 10 variables were selected from 72 variables
using a combination of representative variables selection and predictive backwards selection. The
importance of each variable (from top to bottom) is determined by order of exclusion in backwards
selection, with the most important variables remaining in the model the longest.
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Figure 2: Import Risk Variable Selection Criteria. Methods for down selecting predictor
variables from 72 to 10. (A) Representative Variable Selection: Representation distance — a measure
of how much information is dropped, with higher distance dropping more information — versus
number of representative variables. (B) Backwards Selection: Mean out—of-sample log-likelihood
versus number of variables used in the model.



Environmental

Annual Mean Temperature

Socio-economic Demographic, Travel and Vector Suitability

Annual Precipitation
Slope
Population Count,
Isothermality
Precipitation of Driest Month
Elevation
Maximum Green Vegetation Cover
Temperature Seasonality
Precipitation Seasonality
Min Temperature of Coldest Month
Precipitation of Driest Quarter
Max Temperature of Warmest Month
Precipitation of Wettest Quarter
Temperature Annual Range
Precipitation of Warmest Quarter
Mean Temperature of Wettest Quarter
Precipitation of Coldest Quarter
Mean Temperature of Driest Quarter

Mean Temperature of Warmest Quarter

Mean Temperature of Coldest Quarter
Mean Diurnal Range
Precipitation of Wettest Month
Aspect
Artificial Surface Cover(Percentage)
Total Artificial Surface Cover (km)

Employed Population
Unemployed Population
Employed Population in Percentage
Unemployed Population in Percentage
Population below Poverty Level in Percentage
Families below Poverty Level in Percentage
Population with Health Insurance
Percentage with Health Insurance
Population without Health Insurance
Percentage without Health Insurance
Population Walk to Work in Percentage
Percentage Population Commuting to Work with Taxi
Mean Population Travel Time to Work(Minutes)
Population Walk to Work
Population Commuting to Work with Taxi
Percentage Commuting to Work with Public Transportation
Commuting to Work with Public Transportation
Commuting to Work with Car, Truck or Van (Carpooled)
Commuting to Work with Car, Truck or Van(Alone)
Percentage Population Commuting to Work with Car, Truck or Van(Carpooled)
Percentage Population Commuting to Work with Car, Truck or Van(Alone)
Population Commuting to Work with Other Means
Percentage Commuting to Work with Other Means
Education Attainment below 9th grade
Percentage Population Education Attainment below 9th grade
Population with Education Attainment between 9th and 12th grade
Percentage Population Education Attainment between 9th and 12th grade
Population with High School Graduation
Percentage Population with High School Graduation
Population go to College without diploma
Percentage Population go to College without diploma
Population with Associates degree
Percentage of Population with Associates degree
Population with Bachelor’s degree
Percentage Population with Bachelor’s degree
Population with Graduate or professional degree
Percentage of Population with Graduate or professional degree

Male Population
Female Population
Male Population in Percentage
Female Population in Percentage
Total Amount of Visitor Tax Receipts(Local)
Total Amount of Visitor Tax Receipts(State)
Total Amount of County Direct Spending on Traveling
Total Amount of Visitor Spending
Total Amount of Travel Earnings
Travel Related Number of Jobs
Average MGV (percentage per km)
Total Approximate MGV Cover (km)

Table 4: All 72 environmental, socioeconomic, and behavioral variables evaluated for
Texas county ZIKV importation model are at a county level from the 2009-2013
American Community Survey 5-year estimates https://www.census.gov/acs/www/data/
data-tables-and-tools/data-profiles/2013/, Dean Runyan Associates report http:
//www.deanrunyan.com/doc_library/TXImp.pdf and WorldClim Database [7]


https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/2013/
https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/2013/
http://www.deanrunyan.com/doc_library/TXImp.pdf
http://www.deanrunyan.com/doc_library/TXImp.pdf

1.2 County R, Estimation
1.2.1 Data

Aedes aegypti abundance We assumed that mosquito abundance in a given county is dis-
tributed as a Poisson random variable, with expectation A = -In(1-county occurrence probability)
[8]. For each county, we first estimated occurrence probability by averaging the 5km? occurrence
probabilities given in [9] contained within the county, and then applied the equation above to derive
an average county abundance.

In this analysis we focus exclusively on Ae. aegypti as the primary vector of ZIKV transmission.
However, experimental infections of Ae. albopictus in Florida found that this species is also capable
of transmitting ZIKV, but has a lower probability of infection than Ae. aegypti. In Texas, the
distribution of Ae. albopictus largely overlaps with that of Ae. aegypti but extends further westward
[9]. These western areas are expected to receive negligible ZIKV importations, whereas the areas of
vector overlap include high ZIKV importation zones such as the southern border and the Houston
metropolitan area. Thus, by excluding Ae. albopictus from our analysis, we may be underestimating
relative risk in some of the highest risk areas, but this will depend on the vectorial competence
of Ae. albopictus. We also do not consider the common species Culex quinquefasciatus, as there
is laboratory evidence that it is not competent to transmit ZIKV in humans [10], although recent
statistical work predicts that it may be competent [11].

Average temperatures For each county we obtained average minimum and maximum temper-
atures for each month for each county (C° ) from 2000 to 2010 using the CDC Wonder interface
[12]. We averaged the minimum and maximum temperatures to obtain estimates for the average
monthly temperatures.

Gross Domestic Product We obtained county GDP from 2010 as part of the G-Econ research
project (http://gecon.yale.edu/) [13].

1.2.2 Ry calculation

Perkins et. al. generated functional distributions via 1000 Monte Carlo samples from the underly-
ing uncertainty in the parameter distributions (available at https://github.com/TAlexPerkins/
Zika_nmicrobiol_2016). We combined these functionals with county average temperature and
GDP estimates, to obtain a county Ry distribution. Given the high uncertainty in the underlying
parameter estimates, we chose to analyze relative risk by scaling the median Ry estimate of each
county from 0 (lowest risk)-1 (highest risk). For the purpose of demonstration, we calculated a
county’s sustained transmission rate using a product of the relative risk and a plausible maximum
Rp. In the analysis we chose this Ry to be 1.5.

2 ZIKYV Outbreak Simulations

2.1 Simulating Outbreaks

We model ZIKV outbreaks using a stochastic Markov branching process model (Fig 4). To transmit
ZIKV, a mosquito must bite an infected human, get infected with the virus, bite a susceptible
human, and the human must then get infected with the virus. Rather than explicitly model the full
transmission cycle, we aggregate the two-part cycle of ZIKV transmission (mosquito-to-human and
human-to-mosquito) into a single exposed class, and do not explicitly model mosquitoes. For the
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Figure 3: The 95% CI of Ry Distributions for August. From left to right, the 2.5%, 50%
and 97.5% quantile Ry values for August. The range of absolute values spans 0.02-6.90. Given the
considerable uncertainty in socioeconomic and environmental drivers of ZIKV, we analyzed relative
rather than absolute transmission risks.

purposes of this study, we need only ensure that the model produces a realistic human-to-human
generation time of ZIKV transmission.

Our simulations begin with a single ZIKV imported case, and we simulate the Susceptible-
Exposed-Infectious-Recovered (SEIR) transmission process that follows. The temporal evolution of
the compartments are governed by daily probabilities for infected individuals transitioning between
E, I and R states, new ZIKV introductions and transmissions, and reporting of current infectious
cases (Table 5). We assume that infectious cases cause a Poisson distributed number of secondary
cases per day (via human to mosquito to human transmission), and that low reporting rates cor-
respond to the percentage (~ 20%) of symptomatic ZIKV infections [14]. Although reporting has
been as low as 10% in historical ZIKV outbreaks, we focus primarily on 20% reporting for the
majority of results. We make the simplifying assumption that asymptomatic cases transmit ZIKV
at the same rate as symptomatic cases, which can be modified if future evidence suggests otherwise.
We give the model equations below for both introduced cases (Eqs 3) and autochthonous cases (Eqs
4).

For each scenario, consisting of a particular importation rate, transmission rate, and report-
ing rate, we ran 10,000 stochastic simulations. Each simulation began with a single infectious
unreported importation and terminated when there were no individuals in either the Fxposed or
Infectious classes or the cumulative number of autochthonous infections reached 2,000. We classi-
fied simulations as either epidemics or self-limiting outbreaks; epidemics are those reaching 2,000
cumulative autochthonous infections with a maximum daily prevalence of at least 50 (Fig 6). We
define daily prevalence as the number of current unreported and reported autochthonous infections.

2.2 Model Equations: Introduced ZIKV Cases
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Figure 4: Diagram of ZIKV outbreak model. The model tracks disease progression, transmis-
sion, and reporting of both imported and autochthonous ZIKV cases. Individuals progress through
compartments via a daily Markovian process, according to the solid arrows in the diagram. The
Ezxposed and Infectious periods consist of several (boxcar) compartments to simulate realistic out-

break timing. Unreported infected individuals have a daily probability of being reported.

Imported

cases are assumed to arrive daily according to a Poisson distribution (with mean o) at the beginning
of their infectious period, and otherwise follow the same infectious process as autochthonous cases.
Autochthonous transmission occurs at rate S(I4 + I5), where I4 and I are the total number of

infectious autochthonous and imported cases, respectively (dashed arrows).

Unreported compartments:
I]U71(t) = [[U71(t — 1) + Pois (.%' = l,p = 0’) — (5 +n— (517)[](]71(15 — 1)
For i € 2,...,n infectious compartments:

I]Uﬂ‘(t) = IIU,i(t — 1) + (5(1 — n)IIU,i—l(t — 1) — ((5 +n— (517)I]U,i(t — 1)
R[U(t) = R[U(t — 1) + (5(1 — n)IIU,n(t — 1)

Reported compartments:
I1ra(t) = I1pa(t = 1) + 11 = 0)iya(t = 1) = (6)Lrra(t — 1)
For i € 2,...,n infectious compartments:

I]R’i(t) = IIR,i(t — 1) + (6)IIR,i—1(t — 1) + (577)]][]7,'_1(75 — 1) + 7](1 — 5)IIU,i(t — 1)
— (0)11Rri(t = 1)
R[R(t) = R[R(t — 1) + (5)I]R,n(t — 1) + (517)I]U’n(t — 1)
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2.3 Model Equations: Autochthonous ZIKV Cases

Exposed compartments:

EAJ(t):EA,l(t—l)—I—Z Pois | x = Z le,k, p=7

JE{IUIR,AU,AR} k=1 (4a)
—(V)Eaq(t—1)
For i € 2,...,e exposed compartments:
Epi(t)=FExi(t—1)+ v)Eai1(t—1) — (v)Ea(t — 1) (4b)
Unreported compartments:
IAU,l(t) = IAU,I(t — 1) + (Z/)EA,e(t — 1) — ((5 +n— 577)[14[]’1@ — 1) (4(3)
For i € 2,...,n infectious compartments:
Tavi(t) = Tavi(t — 1) +6(1 =) Lapi—1(t — 1) — (6 +n — on)lav:(t — 1) (4d)
Rau(t) = Rav(t — 1) +6(1 = n)Laun(t — 1) (4e)
Reported compartments:
Iapa1(t) =Iapa(t—1) +n(1 —6)Iap1(t —1) — (8)Lar1(t — 1) (4f)
For ¢ € 2,...,n infectious compartments:
IAR7i(t) = IAR,i(t — 1) + (5)],4371'_1@ — 1) + ((57])[,4(]7,'_1@ — 1) + 77(1 — 5)IAU,i(t — 1) (4g)
— (5)[,4371'(15 -1)
Rar(t) = Rap(t—1) + (5)IAR,n(t - 1)+ (577)IAU,n(t -1) (4h)

With Pois (z,p) indicating = random draws from a Poisson distribution with A = p, subscripts
of I and A, respectively, indicating introduced and autochthonous cases, subscripts of R and U,
respectively, indicating reported and unreported cases, and parameter values defined as described
in Table 5.

2.4 Fitting the Generation Time

To capture the correct outbreak timing, we fit the generation time of our SEIR model to estimates
for the ZIKV exposure and infectious periods in humans. The generation time measures the average
duration from initial symptom onset to the subsequent exposure of a secondary case, and is esti-
mated to range from 10 to 23 days for ZIKV [16]. In our model, the generation time corresponds to
the sum of the exposure period and 1/2 the infectious period. We therefore fit the infectious period
in our model to human ZIKV estimates for duration of viral shedding, and then fit the exposure
period so that the sum of the two classes match the estimated ZIKV serial interval.
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Parameter

Description

Values Investigated
(or median 95%)

Source

Exposed
compartments

(e)
Incubation Rate
v)
Infectious
compartments

(n)
Recovery Rate

(9)

Reproduction
Number (Ry)

Daily Reporting
Rate (1)

Daily
Importation
Rate (o)

Generation
Time

Number of exposed compartments

Daily probability of progressing from one
exposed compartment to the next

Number of infectious compartments

Daily probability of progressing from one
infectious compartment to the next

The expected total number of secondary
infections from one infectious individual
in a fully susceptible population

The daily probability of an infectious
individual being reported

The expected number of infectious ZIKV
importations per day

The average length of time between

: __ e 1\ n
consecutive exposures GT = b + (5)3

0.584

0.3041

0-3.1

Daily:
0.011 — 0.0224
Overall: 10 — 20%

0.0-1.21

15 (9.5-23.5) days

Fit (See 2.4)

[15, 16]

Fit (See 2.4)

(15, 16]

County Ry
estimates

[14]

County
importation
rate
estimates

[16]

Table 5: Stochastic ZIKV outbreak model parameters. We hold the disease progression
parameters constant across all scenarios, estimate Ry and importation rate for each individual
county, and vary the reporting rate to investigate its impact on the uncertainty of ZIKV risk

assessments.



13

According to our modeling framework: with one infectious compartment, the distribution of
waiting times in the compartment would follow a geometric distribution, with the most common
waiting time equal to one day regardless of the transition rate. As this is a biologically unrealistic
waiting time distribution, we use Boxcar implementations to yield a more realistic distribution
[17]. In such a framework one splits a compartment into multiple separate compartments (boxes),
has individuals transition through these compartments, and alters the transition rate for each
compartment so the average waiting time spent in all compartments equals that of the original
desired average. For example, if a 10 day infectious period were desired, one could model the
infectious period as 1 compartment with a daily transition rate of 1/10, or 5 compartments with
a daily transition rate of 5/10. The number of infectious individuals is either the number of
individuals in the single compartment, or the total number of individuals in all five boxes. Both
scenarios would have an average waiting time of 10 days to move through the infectious period,
but the 5 boxes would necessitate individuals being infectious for at least 5 days giving a more
realistic waiting time distribution that follows a negative binomial distribution (sum of multiple
independent geometric distributions).

First, we solved for transition rates and compartments of a Boxcar Model infectious period that
yielded an infectious period with 3 compartments and mean duration of 9.88 days and 95% CI of
(3-22) [15]. Then, we fit the exposure period so that the combined duration of the infectious and
exposure periods matched the empirical ZIKV generation time range [16], yielding 6 compartments
and a mean exposure period of 10.4 days (95% CI 6-17) and finally a mean generation time of 15.3
days (95% CI 9.5-23.5). Given that the exposure period includes human and mosquito incubation
periods and mosquito biting rates, this range is consistent with the estimated 5.9 day human ZIKV
incubation period [15]

3 Risk Assessment and Surveillance Trigger Analysis

Although ZIKV surveillance data will ultimately be used for many planning and response purposes,
here we focus on just one: assessing the potential for epidemic expansion. This is intended as a
demonstration and test of the approach, which can be similarly applied to plan and improve other
surveillance activities.

We classify simulations as epidemics if the reaches at least 2,000 autochthonous cases (Our
simulation length - Fig 5)and, at least once, surpass a daily autochthonous prevalence of 50. The
second criteria was systematically designed to distinguish (1) simulations with high transmission
rates from (2) simulations with low transmission rates but high importation rates (Fig 6). The
daily prevalence threshold of 50 ensures that the vast majority of outbreaks and epidemics are
classified correctly. Occasionally, outbreaks with Ry < 1 and a high importation rate grow suffi-
ciently large to be classified as epidemics, even though they technically are not. Since they would
warrant substantial a public health response [18], we let the classification stand. As discussed in
the main text, such misclassifications arise only under exceedingly high importations rates and do
not qualitatively influence our results.

To find the epidemic risk in a county upon seeing, x, reported cases, we first find all trials in
our 10,000 simulations that encounter x reported cases, and then find what proportion of those
simulations become an epidemic. For example, if 1,000 of a county’s simulated outbreaks have 2
reported cases, but only 50 of those simulations become epidemics, than the epidemic risk upon
seeing 2 cases in that county would be 5%. This framework allows us to assess 1) the likelihood
of a county experiencing x reported cases and 2) the probability of sustained transmission upon a
second reported cases (assuming no subsequent intervention).
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We only analyze triggers for counties where at least 1% of simulations reach the trigger value
(number of reported cases), to avoid accidentally inflating the risk of counties that have only very
few simulations reaching the trigger value. This method also does not distinguish between counties
with 500 epidemics out of 1,000 triggered simulations from those with 5,000 of 10,000. Thus, we
report the probability of a triggered outbreak separately. Consider a county with an Ry = 1.1
and another county with a much higher Ry. In the second county, outbreaks are much more likely
to progress into epidemics. However, both counties should interpret a cluster of reported cases
as strong indication of epidemic expansion, regardless of the prior probability that such a cluster
would occur.

We evaluate epidemic risk across Texas counties following two reported autochthonous cases, in
line with recent CDC’s guidelines [18]. As demonstrated in the main text, our framework can also
be applied to design surveillance triggers, based on local epidemic risks and reporting rates. We
show our full Texas risk assessment under a worse case elevated importation scenario in Fig 77.

0.95 1.05
7500 1
7500 -
50004 5000
2500 2500 1
0- - 0- — -
0 500 1000 1500 2000 0 500 1000 1500 2000

Cumulative Infections

Figure 5: Determining outbreak simulation length. If outbreak simulations are too short,
self-limiting outbreaks may reach the maximum number of infections due to stochasticity. We chose
to run our simulations to 2,000 cumulative infections as it conservatively differentiated the large
outbreaks of simulations with Ry just below 1 (0.95) from the epidemics of those with Ry just above
1 (1.05). We therefore chose to run our simulations until a maximum number of 2,000 infections.
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Figure 6: Selecting daily prevalence threshold for distinguishing self-limiting outbreaks
from epidemics. Across a range of Ry values, we plot the maximum daily total autochthonous
infectious individuals for 1,000 of our 10,000 trials (black dots). The blue line indicates the threshold
(50) selected to differentiate epidemics with Ry > 1 from outbreaks with Ry < 1. At a low
importation rate (0.01), the majority of simulations with Ry < 1 are self-limiting and rarely progress
into large sustained outbreaks. As Ry increases, a greater proportion of simulations exceed the
threshold. As the importation rate increases (panels from left to right) the separation between
self-limiting outbreaks and epidemics becomes more pronounced.
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Figure 7: Time between detection of locally transmitted cases during epidemics. Across
a range of Ry values with an importation rate 0.1 cases/day, we plot the time between detection
events of autochthonous cases for simulations out of the 10,000 trials in which epidemics occurred
(black dots). The blue line indicates a two-week threshold as recommended by the CDC for follow-
up of local transmission. Even under a high importation rate of 0.1 cases/day, epidemics do not
occur when Ry = 0.8, and rarely occur when Ry = 0.9. As Ry increases, a greater proportion
of simulations have fewer days in between detection events as the number of infections rapidly
increase.
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3.1 Texas risk assessment
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Figure 8: Interactions between county importation rate, sustained transmission risk,
and epidemic probability The estimated sustained transmission risk is plotted against the prob-
ability of detecting two cases in the county. It is clear that there is a baseline monotonically
increasing risk for detecting two cases as sustained transmission risk increases. Abnormally large
importation risks (point size), alter this relationship to drastically increase the probability of de-
tecting two cases within a county. The probability of an epidemic upon seeing two cases (point
colors) is best predicted by the sustained transmission risk and not the importation risk unless the
importation risk is high.

4 Seasonal Analysis

The extrinsic incubation period of ZIKV in Ae. aegypti and the mortality rate of Ae. aegypti are
hypothesized to be temperature dependent, as reported for other Flaviviridae viruses [19, 20, 21],
though they have not yet been directly estimated for Texas Ae. aegypti. Here, we consider seasonal
changes in these transmission drivers and its impact on the distribution of relative risk across
Texas. Specifically, we calculate monthly Ry estimates throughout the summer and fall of 2016,



18

based on historical monthly average temperatures (from 1980-2010) for each county [12] (Fig 9).
We normalized R( values across all months to show the relative transmission risk, using the overall
maximum Ry as the highest risk county and month. Transmission risk is expected to be stable
throughout the summer, and into September. In October, however, the number of higher risk
counties is expected to decrease, reamining concentrated in the southern (warmer) counties. Based
on historical temperature differences between months, by November the relative transmission risk
is expected to be low across Texas.

May Jun Jul Aug

Sep Oct Nov

Relative Transmission Risk
0.00 025 050 075 1.00

Figure 9: Monthly R, estimates based on seasonal changes in the temperature-
dependent extrinsic incubation period of ZIKV in Ae. aegypti and the mosquito mor-
tality rate of Ae. aegypti.
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